函数的单调性与导数_第1页
函数的单调性与导数_第2页
函数的单调性与导数_第3页
函数的单调性与导数_第4页
函数的单调性与导数_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,1.3.1函数的单调性与导数,(4).对数函数的导数:,(5).指数函数的导数:,(3).三角函数 :,(1).常函数:(C)/ 0, (c为常数);,(2).幂函数 : (xn)/ nxn1,复习:基本初等函数的导数公式,单调性的定义,对于函数yf(x)在某个区间上单调递增或单调递减的性质,叫做f(x)在这个区间上的单调性,这个区间叫做f(x)的单调区间。,知识回顾,一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)4,或x0,即x1时,函数单调递增;,当 0,即x1时, 函数单调递减;,(3) f(x)=sin

2、x-x ; x(0,p),解: =cosx-10, 即 时, 函数单调递增;,图象见右图。,当 0 (B)11 (D) 0a1,A,证明:令f(x)=e2x12x. f(x)=2e2x2=2(e2x1) x0,e2xe0=1,2(e2x1)0, 即f(x)0 f(x)=e2x12x在(0,+)上是增函数. f(0)=e010=0. 当x0时,f(x)f(0)=0,即e2x12x0. 1+2xe2x,2.当x0时,证明不等式:1+2xe2x.,分析:假设令f(x)=e2x12x.f(0)=e010=0, 如果能够证明f(x)在(0,+)上是增函数,那么f(x)0,则不等式就可以证明.,点评:所以以后要证明不等式时,可以利用函数的单调性进行证明,把特殊点找出来使函数的值为0.,3.设f (x) = ax3+x 恰有三个单调区间,试确定a 的取值范围,并求其单调区间。,提示:运用导数判断单调性,根据函数的单调性比较函数值大小,(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论