




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、共线向量与共面向量,定义:,一、共线向量与共线向量定理,规定: 零向量与任一向量是共线向量.,A,P,B,例1 已知A、B、P三点共线,O为直线外 一点,且 ,求 的值.,二.共面向量:,1.共面向量:能平移到同一平面内的向量,叫做共面向量.,注意:空间任意两个向量是共面的,但空间任意三个向量一定共面吗?,如果是 同一平面内两个不共线的向量,那么对于这一平面内的任一向量 ,有且只有一对实数 ,使,平面向量基本定理:,推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使 或对空间任一点O,有,练习: 已知A、B、M三点不共线,对于平面 ABM外的任一点O,确定在下列各条件下, 点P
2、是否与A、B、M一定共面?,7.已知A、B、C三点不共线,对平面外一点 O,在下列条件下,点P是否与A、B、C共面?,一、引入,1.共线向量定理:,2.共线向量定理的推论: (1)若直线l过点A且与向量 平行,则 (2)三点P、A、B共线的充要条件有:,3.共面向量定理:,4.P、A、B、C四点共面充要条件:,例1 如图,已知平行四边形ABCD,过平 面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使 求证: 四点E、F、G、H共面;,E,H,G,F,分析: 证三点共线可尝试用向量来分析.,1.对于空间任意一点O,下列命题正确的是: (A)若 ,则P、A、B
3、共线 (B)若 ,则P是AB的中点 (C)若 ,则P、A、B不共线 (D)若 ,则P、A、B共线,2.已知点M在平面ABC内,并且对空间任意一点 O, , 则x的值为( ),练习,B,然后证唯一性,证明思路:先证存在性,注:空间任意三个不共面向量都可以构成空 间的一个基底.如:,看书P75,推论:设点O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数对 x、y、z使,O,A,B,C,P,例1,特别地,若P为A,B中点,则,我们已经知道:平面中,如图 不共线,,结论:,设O为平面上任一点,则A、P、 B三点共线,或:令x=1-t,y=t,则A、P、B三点共线,那么空间又如何呢?,解:,连AN,1.下列说明正确的是: (A)在平面内共线的向量在空间不一定共线 (B)在空间共线的向量在平面内不一定共线 (C)在平面内共线的向量在空间一定不共线 (D)在空间共线的向量在平面内一定共线,2.下列说法正确的是: (A)平面内的任意两个向量都共线 (B)空间的任意三个向量都不共面 (C)空间的任意两个向量都共面 (D)空间的任意三个向量都共面,补充练习:已知空间四边形OABC,对角线OB、AC,M和N分别是OA、BC的中点,点G在MN上,且使MG=2GN,试用基底 表示向量,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业投入品采购与供应合作协议书
- 小学生体育教学游戏教案
- 高钾食疗清单及营养参考表
- 初中物理力单元知识点总结
- 初中英语主动被动语态综合练习题
- 文明学生养成演讲稿范文
- 基于信息融合的EPS与SAS集成系统故障诊断:方法、模型与应用
- 人事保管合同范文7篇
- 产业生态智能化转型路径研究人工智能视角报告
- 2025年人工智能在智能客服领域的应用增长预测可行性研究报告
- 1.2.2单细胞生物(教学设计)生物苏教版2024七年级上册
- 2025-2026学年大象版(2024)小学科学三年级上册(全册)教学设计(附目录P208)
- 艾媒咨询2025年中国新式茶饮大数据研究及消费行为调查数据
- 雷达式水位计安装单元工程质量验收评定表
- 招商银行笔试题库及参考答案
- 挂靠公司走帐协议书范本
- 2025年中国电信集团校园招聘笔试模拟试题集
- 全屋定制经销商合同协议
- 2024年仁怀市辅警真题
- 知道智慧树有礼同行伴礼一生-大学生礼仪修养满分测试答案
- 2025-2026学年苏科版(2023)小学劳动技术四年级上册教学计划及进度表
评论
0/150
提交评论