




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、18.1勾股定理(4)综合应用,复习:(1)勾股定理的内容:(2)勾股定理的应用:已知两边求第三边;已知一边和一锐角(30、60、45的特殊角),求其余边长;已知一边和另外两边的数量关系,用方程.,4,8,课前练习:(1)求出下列直角三角形中未知的边,在解决上述问题时,每个直角三角形需已知几个条件?,(2)求AB的长,例1、已知:在RtABC中,C=90,CDAB于D,A=60,CD=,求线段AB的长.,变式训练:ABC中,AB=10,AC=17,BC边上的高线AD=8,求线段BC的长和ABC的面积.,8,6,15,6,21,或9,SABC=84或36,当题中没有给出图形时,应考虑图形的形状是
2、否确定,如果不确定,就需要分类讨论。,例2、在ABC中,C=30,AC=4cm,AB=3cm,求BC的长.,D,勾股定理在非直角三角形中的应用:见特殊角作高构造直角三角形.,变式1、在ABC中,B=120,BC=4cm,AB=6cm,求AC的长.,变式2、在等腰ABC中,ABAC13cm,BC=10cm,求ABC的面积和AC边上的高.,两个直角三角形中,如果有一条公共边,可利用勾股定理建立方程求解.,变式3、已知:如图,ABC中,AB=26,BC=25,AC=17,求ABC的面积.,方程思想:两个直角三角形中,如果有一条公共边,可利用勾股定理建立方程求解.,例3、已知:如图,B=D=90,A=
3、60,AB=4,CD=2.求四边形ABCD的面积.,变式训练:如图,在平面直角坐标系中,点C的坐标为(0,4),B=90,BCO=60,AB=2,求点B的坐标.,例4、如图,在RtABC中,C=90,AD平分BAC,AC=6cm,BC=8cm,(1)求线段CD的长;(2)求ABD的面积.,x,x,8-x,6,6,4,方程思想:直角三角形中,已知一条边,以及另外两条边的数量关系时,可利用勾股定理建立方程求解.,8,10,变式练习:如图,在直角坐标系中,ABC的顶点A为(0,6),B为(8,0),AD平分BAC交x轴于点D,DEAB于E.(1)求ABD的面积;(2)求点E的坐标.,如图,小颍同学折
4、叠一个直角三角形的纸片,使A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?,x,10-x,6,SABC=84或36,补充练习:1、在ABC中,AD是BC边上的高,若AB=l0,AD=8,AC=17,求ABC的面积.,矩形ABCD如图折叠,使点D落在BC边上的点F处,已知AB=8,BC=10,求折痕AE的长。,A,B,C,D,F,E,RtABC中,AB比BC多2,AC=6,如图折叠,使C落到AB上的E处,求CD的长度,A,B,C,D,E,(2)三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC,例5(1)已知直角三角形的两边长分别是3和4,则第
5、三边长为.,5,或,8,6,15,6,21,或9,练习5(1)已知直角三角形两边的长分别是3cm和6cm,则第三边的长是.(2)ABC中,AB=AC=2,BD是AC边上的高,且BD与AB的夹角为300,求CD的长.,规律,分类思想,1.直角三角形中,已知两边长,求第三边时,应分类讨论。,2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。,例7(1)直角三角形中,斜边与一直角边相差8,另一直角边为12,求斜边的长.,例7(2)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.,x,x,8-x,6,6,4,方程思想:直角三角形中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵阳职业技术学院辅导员考试试题及答案
- 2025百色学院辅导员考试试题及答案
- T/ZGZS 0909-2023退役光伏组件梯次利用通用规范
- 急救配合流程标准化实施
- 包头常铝北方铝业有限责任公司招聘笔试题库2025
- 财务报表分析技能2025年试卷及答案
- 社工师职业资格考试试卷及答案2025年
- 2025年土木工程设计基础考试试题及答案
- 2025年网络传播与社会影响考试试题及答案
- 2025年社会心理学与应用研究考试试题及答案
- 2025年中考物理仿真模拟试卷刷题卷 5套(含答案解析)
- 工程质量管理文件
- 2025“背锅”第一案!宁夏兴尔泰化工集团有限公司“12·2”事故调查报告课件
- 监理部年度安全生产管理工作考核暨安全管理自查报告
- 《古代汉语》否定句否定词课件
- 餐饮行业人事管理流程创新
- 四川省攀枝花市重点名校2025届中考联考生物试题含解析
- 舞台灯光色彩学应用-深度研究
- 肥胖健康知识科普
- T-CAICI 88-2024 信息通信工程建设安全风险分级管控和隐患排查治理通.用要求
- 《中考前心理辅导》课件
评论
0/150
提交评论