




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2等差数列(一),1理解等差数列的概念2掌握等差数列的通项公式和等差中项的概念,深化认识并能运用,课前自主学习,1如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做_数列,这个常数叫做等差数列的_,公差通常用字母d表示答案:等差公差2若三个数a,A,b构成等差数列,则A叫做a与b的_,并且A_.,自学导引,3若等差数列的首项为a1,公差为d,则其通项an_.答案:a1(n1)d,自主探究,2如何理解等差数列的自然语言与符号语言的关系?,可见,等差数列的意义用符号语言表示,即a1a,anan1d(n2),其本质是等差数列的递推公式,1等差数列a2d,a,a2d
2、,的通项公式是()Aana(n1)dBana(n3)dCana2(n2)dDana2nd解析:an(a2d)(n1)2da2(n2)d.答案:C,预习测评,2ABC中,三内角A、B、C成等差数列,则角B等于()A30B60C90D120答案:B3等差数列1,3,5,7的通项公式是_解析:因为a11,公差d312,所以其通项公式为an1(n1)2,即an2n1.答案:an2n143与15的等差中项是_解析:3与15的等差中项是9.答案:9,课堂讲练互动,1等差数列的定义(1)一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的
3、公差,公差通常用字母d表示,要点阐释,特别提示:(1)注意定义中“同一常数”这一要求,这一要求可理解为:每一项与前一项的差是常数且是同一常数,否则这个数列不能称为等差数列,(2)注意定义中“从第2项起”这一要求,这一要求可理解为:首先是因为首项没有“前一项”,其次是如果一个数列,不是从第2项起,而是从第3项起,每一项与前一项的差是同一个常数(即an1and,nN*,且n2),那么这个数列不是等差数列,但可以说这个数列从第2项起(即去掉第1项后)是一个等差数列,2等差数列的通项公式公式ana1(n1)d也可以用以下方法(累加法)导出:,将以上n1个等式两边分别相加,可得ana1(n1)d,移项得
4、通项公式ana1(n1)d.“累加法”是推导给出形如an1anf(n)(nN*)递推公式的数列的通项公式的一种重要方法由等差数列的通项公式ana1(n1)d可以看出,只要知道首项a1和公差d,就可以求出通项公式,反过来,在a1,d,n,an四个量中,只要知道其中任意三个量,就可以求出另一个量,3等差中项及等差数列的判定判断一个数列为等差数列的常见方法有:,(3)等差中项经常作为数列题目中的题设或结论出现,所以要引起重视,题型一等差数列的通项公式,典例剖析,方法点评:关于a1,an,n,d之间的运算称为基本量的运算,这是等差数列中最简单、最重要、必须熟练掌握的知识,1已知数列5,3,1,1,是等
5、差数列,判断52,2n7(nN*)是否为该数列的某项?若是,是第几项?,解:根据所给数列,可得等差数列的通项公式为an5(n1)22n7.而2n72(n7)7(nN*),所以2n7是该数列的项,是第n7项,题型二等差数列的判断【例2】已知a,b,c成等差数列,那么a2(bc),b2(ca),c2(ab)是否成等差数列?证明:a,b,c成等差数列,ac2b,a2(bc)c2(ab)2b2(ca)a2cc2aab(a2b)bc(c2b)a2cc2a2abcac(ac2b)0,a2(bc)c2(ab)2b2(ca),a2(bc),b2(ca),c2(ab)成等差数列,方法点评:如果a,b,c成等差数列,常转化成ac2b的形式去运用;反之,如果求证a,b,c成等差数列,常改证ac2b.有时应用概念解题,需要运用一些等值变形技巧,才能获得成功,误区解密对等差数列的定义理解不透彻,错因分析:以特殊代替一般,用验证几个特例作为证明是不正确的,必须用定义或与定义等价的命题来证明,纠错心得:要说明一个数列为等差数列,必须说明从第二项起所有的项与其前一项之差为同一常数,即anan1d(n2)恒成立,而不能只验证有限个相邻两项之差相等,公差是从第二项起,每一项减去它前一项的差,即danan1(n2),或dan1an(nN*);要证明一个数列是等差数列,必须对任意nN*,an1and,或anan1d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市浦东实验2025届高一化学第二学期期末检测试题含解析
- 上海市上戏附中2025届高一下化学期末教学质量检测模拟试题含解析
- 农机中心制度管理办法
- 合肥建设行业管理办法
- 殡葬服务租赁管理办法
- 村级代管资金管理办法
- 超高压挤包直流电缆绝缘系统技术难点及解决方案研究
- 华为薪资待遇管理办法
- 数据安全策略-第2篇-洞察及研究
- 脚手架施工方案:高空作业安全
- 电商直播平台主播操作手册
- ASTM-D3359-(附著力测试标准)-中文版
- 石嘴山市直机关遴选公务员笔试真题2022
- 吉林省吉林市亚桥中学2023-2024学年七年级下学期期末考试数学试卷
- 贵州省贵阳市南明区2023-2024学年四年级下学期期末数学质量监测
- DL-T5706-2014火力发电工程施工组织设计导则
- 2024-2030年殷瓦钢行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 第一目击者理论考试题题库110题
- 2024年县乡教师选调进城考试《教育学》题库附答案【综合卷】
- 2022智慧健康养老服务与管理专业人才培养调研报告
- 机动车驾驶员安全教育培训课件
评论
0/150
提交评论