




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题七 概率与统计(理)概率与统计应以随机变量及其分布列为中心,求解时应抓住建模、解模、用模这三个基本点排列组合是求解概率的工具,利用排列组合解题时应抓住特殊元素或特殊位置,注意元素是否相邻及元素是否定序,同时还应注意题中是否还涉及两个计数原理 随机变量的均值和方差是概率初步的关键点,解决概率应用问题时,首先要熟悉几种常见的概率类型,熟练掌握其计算公式;其次还要弄清问题所涉及的事件具有什么特点、事件之间有什么联系;再次要明确随机变量所取的值,同时要正确求出所对应的概率统计的主要内容是随机抽样、样本估计总体、变量的相关性,复习时应关注直方图、茎叶图与概率的结合,同时注意直方图与茎叶图的数据特点第
2、3讲统计与统计案例考情解读1.该部分常考内容:样本数字特征的计算、各种统计图表、线性回归方程、独立性检验等;有时也会在知识交汇点处命题,如概率与统计交汇等.2.从考查形式上来看,大部分为选择题、填空题,重在考查基础知识、基本技能,有时在知识交汇点处命题,也会出现解答题,都属于中、低档题1明确直方图的三个结论(1)小长方形的面积组距频率(2)各小长方形的面积之和等于1.(3)小长方形的高,所有小长方形高的和为.2把握统计中的四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据(2)中位数:样本数据中,将数据按大小排列,位于最中间的数据如果数据的个数为偶数,就取中间两个数据的平均数作为中位
3、数(3)平均数:样本数据的算术平均数,即(x1x2xn)(4)方差与标准差方差:s2(x1)2(x2)2(xn)2标准差:s .热点一抽样方法(1)(2013陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为()A11 B12 C13 D14(2)(2014石家庄高三调研)某学校共有师生3 200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_思维启迪(1)系统抽样时需要抽取几个个体,样本就分成几组,且抽取号码的间隔相
4、同;(2)分层抽样最重要的是各层的比例答案(1)B(2)200解析(1)由20,即每20人抽取1人,所以抽取编号落入区间481,720的人数为12.(2)本题属于分层抽样,设该学校的教师人数为x,所以,所以x200.思维升华(1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个号码间隔相同;分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例(1)某校高一、高二、高三分别有学生人数为495,493,482,现采用系统抽样方法,抽取49人做问卷调查,将高一、高二、高三学生依次随机按1,2,3,1 470编号,若第1组有简单随机抽样方法抽取的
5、号码为23,则高二应抽取的学生人数为()A15 B16 C17 D18(2)(2014广东)已知某地区中小学生人数和近视情况分别如图和图所示为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A200,20 B100,20C200,10 D100,10答案(1)C(2)A解析(1)由系统抽样方法,知按编号依次每30个编号作为一组,共分49组,高二学生的编号为496到988,在第17组到第33组内,第17组抽取的编号为163023503,为高二学生,第33组抽取的编号为323023983,为高二学生,故共抽取高二学生人数为3316
6、17,故选C.(2)该地区中、小学生总人数为3 5002 0004 50010 000,则样本容量为10 0002%200,其中抽取的高中生近视人数为2 0002%50%20,故选A.热点二用样本估计总体(1)(2014山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组,如图是根据试验数据制成的频率分布直方图已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A6 B8 C12 D18(
7、2)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A甲 B乙C甲乙相等 D无法确定甲乙20.041236930.0596210.06293310.079640.08770.09246思维启迪(1)根据第一组与第二组的人数和对应频率估计样本总数,然后利用第三组的频率和无疗效人数计算;(2)直接根据公式计算方差答案(1)C(2)A解析(1)志愿者的总人数为50,所以第三组人数为500.3618,有疗效的人数为18612.(2)(0.
8、0420.0530.0590.0610.0620.0660.0710.0730.0730.0840.0860.097)120.068 9,(0.0410.0420.0430.0460.0590.0620.0690.0790.0870.0920.0940.096)120.067 5,s2(0.0420.068 9)2(0.0530.068 9)2(0.0970.068 9)20.000 212.s2(0.0410.067 5)2(0.0420.067 5)2(0.0960.067 5)20.000 429.所以甲、乙两地浓度的方差较小的是甲地思维升华(1)反映样本数据分布的主要方式:频率分布表、
9、频率分布直方图、茎叶图关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的均值、众数和中位数、方差等(2)由样本数据估计总体时,样本方差越小,数据越稳定,波动越小(1)某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为_万元(2)(2014陕西)设样本数据x1,x2,x10的均值和方差分别为1和4,若yixia(a为非零常数,i1
10、,2,10),则y1,y2,y10的均值和方差分别为()A1a,4 B1a,4aC1,4 D1,4a答案(1)10(2)A解析(1)由频率分布直方图可知:,所以x10.(2)1,yixia,所以y1,y2,y10的均值为1a,方差不变仍为4.故选A.热点三统计案例(1)以下是某年2月某地区搜集到的新房屋的销售价格y和房屋的面积x的数据.房屋面积x/m211511080135105销售价格y/万元24.821.618.429.222根据上表可得线性回归方程x中的0.196 2,则面积为150 m2的房屋的销售价格约为_万元(2)(2014江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个
11、变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1 成绩性别不及格及格总计男61420女102232总计163652表2 视力性别好差总计男41620女122032总计163652表3 智商性别偏高正常总计男81220女82432总计163652表4 阅读量性别丰富不丰富总计男14620女23032总计163652A.成绩 B视力 C智商 D阅读量思维启迪(1)回归直线过样本点中心(,);(2)根据列联表,计算K2的值答案(1)31.244 2(2)D解析(1)由表格可知(11511080135105)109,(24.821.618.429.
12、222)23.2.所以23.20.196 21091.814 2.所以所求线性回归方程为0.196 2x1.814 2.故当x150时,销售价格的估计值为0.196 21501.814 231.244 2(万元)(2)A中,a6,b14,c10,d22,ab20,cd32,ac16,bd36,n52,K2.B中,a4,b16,c12,d20,ab20,cd32,ac16,bd36,n52,K2.C中,a8,b12,c8,d24,ab20,cd32,ac16,bd36,n52,K2.D中,a14,b6,c2,d30,ab20,cd32,ac16,bd36,n52,K2.k)0.050.010.0
13、01k3.8416.63510.828)答案(1)B(2)0.01解析(1)依题意得,(014568)4,(1.31.85.66.17.49.3)5.25;又直线0.95x必过样本点中心(,),即点(4,5.25),于是有5.250.954,由此解得1.45.(2)由题意得K28.8026.635.而K26.635的概率约为0.01,所以在犯错误的概率不超过0.01的前提下认为人的脚的大小与身高之间有关系1随机抽样的方法有三种,其中简单随机抽样适用于总体中的个体数量不多的情况,当总体中的个体数量明显较多时要使用系统抽样,当总体中的个体具有明显的层次时使用分层抽样系统抽样最重要的特征是“等距”,
14、分层抽样,最重要的是各层的“比例”2用样本估计总体(1)在频率分布直方图中,各小长方形的面积表示相应的频率,各小长方形的面积的和为1.(2)众数、中位数及平均数的异同:众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量(3)当总体的个体数较少时,可直接分析总体取值的频率分布规律而得到总体分布;当总体容量很大时,通常从总体中抽取一个样本,分析它的频率分布,以此估计总体分布总体期望的估计,计算样本平均值xi.总体方差(标准差)的估计:方差 (xi)2,标准差,方差(标准差)较小者较稳定3线性回归方程 x 过样本点中心(,),这为求线性回归方程带来很多方便4独立性检验(1)作出22
15、列联表(2)计算随机变量K2(2)的值(3)查临界值,检验作答真题感悟(2014江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间80,130上,其频率分布直方图如图所示,则在抽测的60株树木中,有_株树木的底部周长小于100 cm.答案24解析底部周长在80,90)的频率为0.015100.15,底部周长在90,100)的频率为0.025100.25,样本容量为60,所以树木的底部周长小于100 cm的株数为(0.150.25)6024.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布
16、直方图,根据该图,时速在70 km/h以下的汽车有_辆答案20解析时速在70 km/h以下的汽车所占的频率为0.01100.03100.4,共有0.45020(辆)某教育出版社在高三期末考试结束后,从某市参与考试的考生中选取600名学生对在此期间购买教辅资料的情况进行调研,得到如下数据:购买图书情况只买试题类只买讲解类试题类和讲解类都买人数240200160若该教育出版社计划用分层抽样的方法从这600人中随机抽取60人进行座谈,则只买试题类的学生应抽取的人数为_答案24解析只买试题类的学生应抽取的人数为6024.(2012山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随
17、机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A7B9C10 D15思路点拨由系统抽样的概念可以求解解析由系统抽样的特点知:抽取号码的间隔为30,抽取的号码依次为9,39,69,939.落入区间451,750的有459,489,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729459(n1)30,解得n10.所以做问卷B的有10人答案C某校共有学生2 000名,各年级男、女生人数如下表,已知在全校
18、学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生数为()一年级二年级三年级女生373xy男生377370zA.24 B18C16 D12解析:选C依题意可知,二年级女生有380人,则三年级的学生的人数应是500,即总体中各个年级的人数比例为332,故在分层抽样中应在三年级抽取到的学生人数为6416. 配套课时作业A组12(2012济南模拟)某全日制大学共有学生5 600人,其中专科生有1 300人,本科生有3 000人,研究生1 300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科
19、生,本科生与研究生这三类学生中分别抽取()A65人,150人,65人B30人,150人,100人C93人,94人,93人 D80人,120人,80人解析:选A设应在专科生,本科生与研究生这三类学生中分别抽取x人,y人,z人,则,所以xz65,y150.所以应在专科生,本科生与研究生这三类学生中分别抽取65人,150人,65人13(2012陕西高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A46,45,56B46,45,53C47,45,56D45,47,53解析:选A从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即
20、46,众数为45,极差为681256.14(2012广州调研)设随机变量XN(1,52),且P(X0)P(Xa2),则实数a的值为()A4B6C8 D10解析:选A由正态分布的性质可知P(X0)P(X2),所以a22,故a4.15样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A. B.C. D2解析:选D由题可知样本的平均值为1,所以1,解得a1,所以样本的方差为(11)2(01)2(11)2(21)2(31)22.16高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本已知学号为6,34,48的同学在样本中,那
21、么还有一个同学的学号应为_解析:由题意可知,可将学号依次为1,2,3,56的56名同学分成4组,每组14人,抽取的样本中,若将他们的学号按从小到大的顺序排列,彼此之间会相差14.故还有一个同学的学号应为61420.答案:2017(2012济南模拟)随机变量服从正态分布N(40,2),若P(30)0.2,则P(3050)_.解析:根据正态分布曲线的对称性可得P(3050)12P(30)0.6.答案:0.618(2012江南十校联考)“低碳经济”是促进社会可持续发展的推进器某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情
22、况发生的概率分别为,;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中ab1)(1)如果把100万元投资“传统型”经济项目,用表示投资收益(投资收益回收资金投资资金),求的概率分布及均值(数学期望)E();(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围解:(1)依题意,的可能取值为20,0,10,则的分布列为20010P故的均值E()200(10)10(万元)(2)设表示100万元投资“低碳型”经济项目的收益,则的分布列为3020Pab依题意,需30a20b1
23、0,又ab1,则50a2010,所以a1.19. (2012郑州质检)为加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,郑州市教育局举办了全市中学生创新知识竞赛某校举行选拔赛,共有200名学生参加,为了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计请你根据尚未完成的频率分布表,解答下列问题:分组频数频率一60.570.5a0.26二70.580.515c三80.590.5180.36四90.5100.5bd合计50e(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,199,试写出第二组第一位学生的编号;(2)求出a,b,c,d,e的值(直接写出结果),并作出频率分布直方图;(3)若成绩在85.595.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人解:(1)依题意可知第二组第一位学生的编号为004.(2)a,b,c,d,e的值分别为13,4,0.30,0.08,1.频率分布直方图如下:(3)被抽到的学生中获二等奖的人数约为9211,占样本的比例是0.22,即获二等奖的概率为22%,所以参赛学生中获二等奖的人数估计为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学竞赛题库拓展:高中数学竞赛模拟试题与解析
- 露天煤矿改建项目实施方案(模板)
- 服装行业品牌销售情况表
- 家里的宠物趣事记物作文5篇
- 学前儿童教育成果展示表
- 我与地坛:作者情感深度探究教案
- 2025年数字化转型与商业智能能力的实际应用综合考试卷及答案
- 2025年企业管理与政策研究毕业设计答辩考试题及答案
- 2025年财务会计与管理分析考试试题及答案
- 物资采购加工管理制度
- DB3415-T 82-2024 急流救援技术培训规范
- 智能制造系统-智能制造技术与未来
- 2025山东产权交易集团有限公司招聘(校招社招)29人笔试参考题库附带答案详解
- 中国重点、热点区域(讲练)-2025年中考地理二轮复习(全国版)
- 2025年统计学期末考试题库-深度解析综合案例分析题
- 2024北京朝阳区五年级(下)期末数学试题及答案
- 多模态成像技术在医学中的应用-全面剖析
- 汽车点火考试题及答案
- 2024年湖南学考选择性考试政治真题及答案
- 公司欠款清账协议书
- 医院培训课件:《十八项核心医疗制度解读》
评论
0/150
提交评论