




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、地球物理反演理论,地球物理反演课程组,武汉大学 测绘学院,内容,1、广义逆矩阵的概念; 2、奇异值分解(SVD)和自然逆; 3、广义反演法; 4、数据分辨矩阵; 5、参数分辨矩阵; 6、特征值的应用; 7、分辨力高低和方差大小的测度; 8、最佳折衷解;,1、广义逆矩阵的概念,前面我们讨论了解线性反演问题的长度法,无疑还可以定 义其他各式各样的长度,比如 范数等。但是,由于其 他范数解的应用并非如此广泛,因而,没有必要在这里进 一步加以论述了。 这里我们将从另一个角度,即广义逆矩阵的角度讨论线性 反演问题,并称基于广义逆矩阵建立起来的线性反演法叫 广义反演法(Gener-alized Inver
2、sion),或广义线性反 演法(Generalized Linear Inversion,缩写为GLI)。,设线性反演问题: 如果把G看成一个映射算子,那么正演问题 就是将模型空间 中的m模型通过算子G 映射到数据空间 中的观测数据d通过映 射 到模型空间中的模型m的一种运算。,由矩阵理论可知,若G是非奇异矩阵,那么 。这里 是G的逆矩阵,且有:,在G是奇异矩阵的情况下,G的逆 并不存 在,故我们称 为矩阵G的广义逆。所谓广 义逆是矩阵G在常规意义下的逆之推广。普 通逆矩阵只是广义逆矩阵的一种特殊形式。 显然,在奇异矩阵情况下,:,2、奇异值分解(SVD)和自然逆,为了更好地了解在线性反演中应
3、用相当普 遍的奇异矩阵的奇异值分解(Singular Value Decomposition,缩写为SVD), 我们先从矩阵分解讲起。,-实对称矩阵的正交分解; 任何一个实对称矩阵G均可分解为三个矩阵 之连乘积,第一和第三个矩阵分别为G的特 征向量矩阵U和它的转置,而第二个矩阵则 是G的特征值构成的对角线矩阵 。,-非奇异且非对称矩阵的分解;,- Lanczos的奇异值分解 ; (3.25) 任何一个MxN阶的矩阵G,均可分解为 (3.25)式,即可分解为三个矩阵之乘积。,取: (3.29) 为矩阵G的逆算子,它被Lanczos称为“自然 逆”(natural inverse)。Jackson
4、又称它为 Lanczos逆。尔后,大多数学者(如Aki), 包括Penros在内都把它称为广义逆。而把基 于(3.29)式建立起来的解线性反演问题的 方法统称为广义反演法.,因而Gm=d的解为: 可以证明(3.29)式定义的自然逆满足 Penros给出的四个条件。,3、广义反演法;,在这节里,我们只涉及基于Lanczos自然逆而建立起来的 广义反演法,而不讨论基于一般广义逆(即不全部满足 Penros定义的四个条件的逆)的所谓广义反演法。,3、广义反演法;,在这节里,我们只涉及基于Lanczos自然逆而建立起来的 广义反演法,而不讨论基于一般广义逆(即不全部满足 Penros定义的四个条件的逆
5、)的所谓广义反演法。,设线性反演问题为:Gm=d 根据自然逆的定义,有: 下面,我们分如下四种情况分别讨论。,(1)当M=N=r时, 和 均不存在,即 和 均不存在,即 和 都是标准的正交矩阵且: 因此,,(2)当 时,Gm=d是超定方程。 不复存在,但 存在,此时 是正交矩阵,即: 而U,是半正交矩阵,即:,因此,在这种情况下,广义反演法的解为:,(3)当 时,Gm=d是欠定方程。此时, 不复存在,而 存在。 是正交矩阵,且: 而 是半正交矩阵,即:,因此,广义反演法的解为: 这就是欠定问题的最小长度解,而且解是惟 一的。,(4)当 时, 和 都存在。因此,可以把广义反演解看成是同时在U空间
6、极小 和在V空间极小 的结果。 为了帮助大家理解奇异值分解和广义逆的意 义,现在分析两个简单的例子。 例1: 例2:,4、数据分辨矩阵;,用广义反演法解线性反演问题,不但可以求得一个拟合观 测数据的模型m,而且可以获得一些与观测数据d和模型 参数m有关的辅助信息,例如,数据分辨矩阵(data resolution matrix)等。,假定已经求得模型,即: 这里,用 表示用广义反演法构制的模型 ,以示和真实模型m之区别。试问, 能拟 合观测数据吗?也就是说,把代入线性方程 D=Gm能获得与d相同的重建数据吗?,若用 表示重建数据,则有: 式中: 是 阶方阵,叫数据分辨矩阵(data resol
7、ution matrix)或信息密度矩阵( information density matrix)。它是拟合观 测数据好坏程度的标志,,如图所示,矩阵F的第i行中诸要素 越接近 于1,则 越接近于 ,即分辨力越高,因 为:,由于数据分辨矩阵F主对角线要素 表明 接近 的程度,因此又定义F的对角线矩阵 ,即: 为重要性(importance)矩阵。,5、参数分辨矩阵;,由广义反演法构制出来的模型 是真正的模型m吗?为回答这一问题,可先将 代入上式,则得: 式中:R为阶方阵,R称之为参数分辨矩阵(parameter resolution matrix)或模型分辨矩阵(model resolutio
8、n matrix)。它是用广义反演法构制的模型和真正地球物理模型m接近程度的一种重要标志。,当 时, 。当 时,即在纯 超定情况下, ,才有 。这时R的 分辨力最高。 当 存在时, 。所以 。 的 每一个要素 ,均可视为m各要素加权的结 果,这是因为:,如果 ,虽有峰值,但变化比较缓慢,或者其峰 值不在R的主对角线上,则R的分辨力不高。分辨力越低, 说明模型参数之间越存在相关。 和数据分辨矩阵相似,参数分辨矩阵也只是数据核G和反 演时所加先验信息的函数,而与观测数据d无关,因此,R 矩阵也是实验设计的重要依据。 同样,可以定义: 为分辨核。 越小,R矩阵的分辨能力越高。一般取其倒数 作为分辨能
9、力的(欲称分辨力)的定量度量。,6、特征值的应用;,在这一节中,将要论述利用广义反演提供了一些有用的、 重要的辅助信息从特征值所获取的辅助信息。,1. 特征值对观测数据和模型参数的影响 将数据核矩阵G作奇异值分解,并代入数据方程得: 如用求和形式书写,则有: 特征值越大,其对重建观测数据的贡献越大;相反越小,则 对的贡献也越小。当反演中大小特征值相差非常悬殊时,小 特征值对重建观测数据几乎毫无作用,甚至将它们去掉也不 会影响观测数据的重建精度。,另一方面,有: 其求和形式为: 其结论和完全相反,即特征值越小,它对构制的 模型参数 影响越大。,2. 解的方差 如果,观测数据具有误差 ,当然用广义
10、反 演法所得的结果也有误差 ,且满足: 因此,解的协方差矩阵:,如果观测数据是统计且独立的,并有相同的 方差 ,则: 故 单位协方差矩阵为:,例 解如下联立方程:,显然,这是三个未知数三个方程式联立方程。其中: 只与第一式有关,各有无限多解,而 与第二、第三式有 关,它们却是矛盾方程,无一般意义下的解,现在用广义 反演法解之,并分析由此而获得的一些辅助信息,如数据 分辨矩阵、参数分辩矩阵和解的方差等。 若将上式写成矩阵。即:,因此有:,由于 和 的特征值完全相同,不难求得 它们分别为2,2。显然,此时 是 一个混定问题。因此,矩阵G之奇异值分别 是:,与对称矩阵 和 相对应的特征向量U 和V分
11、别是:,显然,这是一个混定问题,即 。 此时 ,由于矩阵 和 的秩都 是2。据此:,根据奇异值分解,可得:,因而有: 能拟合观测数据吗?将 代入数据方程,可得:,显然, 与d并不完全相同,这是因为数据分 辨矩阵: 即F不是单位矩阵,所以由:,表明, 与真值相差甚远。 与真实的模型相差多大?可将d=Gm代入 : 中进行分析,式中:,可得: 这就说明, ,而 。由 此看来,根据广义反演法,可以惟一地确定 ,而不能惟一地确定 和 的数值大小,只能求得它们的平均值。,至于m的协方差:,7、分辨力高低和方差大小的测度;,前面讨论了利用观测数据的方差和模型的长度为最小这一 原则求取线性反演问题的长度解,下
12、面将定义一种利用数 据分辨矩阵F,参数分辨矩阵R和协方差矩阵计算模型参 数的办法。,由于分辩矩阵(F,R)接近单位矩阵时, 说明其分辨力最高,因此一种最好办法是利 用非对角线元素之大小(或其展伸情况)来 描述分辩力之高低。现以英文Spread表示展 伸系数,则有:,这种展伸准则有时也叫狄里西莱准则。,把目标函数写为: 并极小之,可以得到模型的最佳解,式中, 为相应项的加权系数。,8、最佳折衷解,在大多数地球物理反演问题中,矩阵G的条件数都很差, 最大与最小奇异值有时相差几十个级次。我们知道,小的 奇异值会引起模型参数的最大误差,却能保证模型参数的 高分辨能力。分辨率和方差是一对矛盾,分辨率高必
13、然方 差大;反之,分辨率低、方差也小,二者不可兼得,只能 取其折衷。或者以牺牲一些分辨率为代价换取较低的方 差;或者以较大的方差为代价,获得较高的分辨率。,Wiggins和Jockson(1972)建议,用广义 反演法求解时,设一个最大允许方差t,使 即可截断或摒弃小于的特征值。这里t为“方差门槛” 值。若特征值按大小顺序排列,即 其中仅保留k个大特征值,而截断 个小特征 值。显然,应按以下方法计算观测数据的有效自 由度q,即有:,式中: 为矩阵V之要素:去掉 个奇 异值相当于把矩阵U和V中最后 个向量 用零向量代替。因而,相对应的数据分辨矩 阵F和参数分辨矩阵R都发生了变化,设为 和 ,则有:,此时,相应的广义逆变为: 由于将小特征值截断的结果,使定义的分辨力降 低了,而方差却大大降低。左图是第k个参数分辨 力和方差的示意图。分辨力随k的增加而提高(即 降低),方差则随k值的增大而增大;反演时 ,令k值从小到大变化,计算 和 ,以 和 为纵、横坐标,作出右图所示的不同k值的 折衷曲线,并由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术在教育行业中的风险评估与管理
- 数据分析在教育评估中的价值与实施
- 心理导航教育心理学指引下的学生心灵探索
- 教育技术进步与教育公平的互动关系
- 全球铀矿资源分布2025年核能产业可持续发展潜力研究报告
- 公交优先发展战略下2025年城市交通拥堵治理的拥堵区域精准治理报告
- 郑州财税金融职业学院《统计分析方法》2023-2024学年第一学期期末试卷
- 公共交通优化:2025年智慧交通流量预测技术应用前景报告
- 山西运城农业职业技术学院《大学生社交礼仪》2023-2024学年第一学期期末试卷
- 四川长江职业学院《装饰工程计量与计价》2023-2024学年第一学期期末试卷
- 知行合一-王阳明传奇课件
- 锅炉浇注料施工方案
- GB/T 17394.1-2014金属材料里氏硬度试验第1部分:试验方法
- GB/T 1606-2008工业碳酸氢钠
- 葛的栽培技术
- 《绿色建筑概论》整套教学课件
- 山东中医药大学2020-2021学年内科护理学试题及答案2
- 2022年绵阳江油市社区工作者招聘考试模拟试题及答案解析
- 初中道德与法治学科教学经验交流
- 工程测量、定位放线控制点复核记录表
- 申办出入境证件的函
评论
0/150
提交评论