




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,第十节,一、有界性与最大值最小值定理,二、零点定理与介值定理,*三、一致连续性,闭区间上连续函数的性质,第一章,1,学习指导,教学目的:了解闭区间上连续函数的性质。 基本练习:了解并通过一定的练习学习最大最小值定理、有界性定理、零点定理及介值定理在函数值的估计和根的估计上的应用。 3注意事项:闭区间上连续的函数有许多好的性质。应了解在闭区间上连续函数的最大最小值定理、有界性定理、零点定理及介值定理。了解定理的条件和结论,并通过一定的练习学会运用它们,2,如果函数f(x)在开区间(a,b)内连续,在右端点b左连续,在左端点a右连续,那么函数f(x)就是在闭区间a,b上连续的。,3,并非任何函数
2、都有最大值和最小值 例如,函数f(x)=x在开区间(a b)内既无最大值又无最小值,应注意的问题:,一、有界性与最大值最小值定理,最大值与最小值 对于在区间I上有定义的函数f(x) 如果有x0I 使得对于任一xI都有 f(x)f(x0) (f(x)f(x0) 则称f(x0)是函数f(x)在区间I上的最大值(最小值),4,例如,5,说明:,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,又至少有一点x2a b 使f(x2)是f(x)在a b上的最小值,至少有一点x1a b 使f(x1)是f(x)在a b上的最大值,定理说明 如果函数f(x)在闭区间a b
3、上连续 那么,6,应注意的问题: 如果函数仅在开区间内连续 或函数在闭区间上有间断点 那么函数在该区间上就不一定有最大值或最小值,例如 函数f(x)=x在开区间(a b) 内既无最大值又无最小值,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,7,又如 如下函数在闭区间0 2 内既无最大值又无最小值,应注意的问题: 如果函数仅在开区间内连续 或函数在闭区间上有间断点 那么函数在该区间上就不一定有最大值或最小值,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,8,定理2(有界性定理) 在闭区间上连续的函数一定在该
4、区间上有界,证明 设函数f(x)在闭区间a b上连续 根据定理1 存在f(x)在区间a b上的最大值M和最小值m 使任一xa b满足 mf(x)M 上式表明 f(x)在a b上有上界M和下界m 因此函数f(x)在a b上有界,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,9,有界性与最大值最小值定理:在闭区间上连续的函数有界且一定有最大值和最小值.,注意:1.若区间是开区间, 定理不一定成立; 2.若区间内有间断点, 定理不一定成立.,10,二、零点定理与介值定理,注: 如果x0使f(x0)=0 则x0称为函数f(x)的零点,定理3(零点定理) 设函
5、数f(x)在闭区间a b上连续 且f(a)与f(b)异号 即f(a).f(b)0,那么在开区间(a b)内至少存在一点x 使f(x)=0,11,例1 证明方程x3-4x2+1=0在区间(0 1)内至少有一个根 证明 设 f(x)=x3-4x2+1 则f(x)在闭区间0 1上连续 并且 f(0)=10 f(1)=-20 根据零点定理 在(0 1)内至少有一点x 使得 f(x)=0 即 x 3-4x 2+1=0 这说明方程x3-4x2+1=0在区间(0 1)内至少有一个根是x ,二、零点定理与介值定理,定理3(零点定理) 设函数f(x)在闭区间a b上连续 且f(a)与f(b)异号 即f(a).f
6、(b)0,那么在开区间(a b)内至少存在一点x 使f(x)=0,12,定理4(介值定理) 设函数 f(x)在闭区间a b上连续 且f(a)f(b) 那么 对于f(a)与f(b)之间的任意一个数C 在开区间(a b)内至少有一点x 使得f(x)=C,二、零点定理与介值定理,定理3(零点定理) 设函数f(x)在闭区间a b上连续 且f(a)与f(b)异号 即f(a).f(b)0,那么在开区间(a b)内至少存在一点x 使f(x)=0,13,二、零点定理与介值定理,定理3(零点定理) 设函数f(x)在闭区间a b上连续 且f(a)与f(b)异号 那么在开区间(a b)内至少一点x 使f(x)=0,
7、推论 在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值,定理4(介值定理) 设函数 f(x)在闭区间a b上连续 且f(a)f(b) 那么 对于f(a)与f(b)之间的任意一个数C 在开区间(a b)内至少有一点x 使得f(x)=C,14,证,15,由零点定理,推论 在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值.,几何解释:,16,例2,证,由零点定理,17,三、一致连续性,定理5(一致连续性定理)如果函数f(x)在闭区间a,b上连续, 那么它在该区间上一致连续.,不论在区间I的任何部分,只要自变量的两个数值接近到一定程度,就可使对应的函数值达到所指定的接近程度。,定义:设函数f(x)在区间I上有定义,如果对于任意给定的正数,总存在着正数,使得对于区间I上的任意两点x1,x2,当|x1-x2| 时,就有|f(x1)-f(x2)| ,那么称函数f(x)在区间I上是一致连续的。,18,思考题,下述命题是否正确?,19,思考题解答,不正确.,例函数,20,五、小结,关于闭区间上连续函数整体性质的四个定理:,有界性定理、最值定理、零点定理、介值定理,,注意条件:1闭区间;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度保姆生活照料与健康管理合同
- 2025届重庆市开州集团数学九年级第一学期期末达标检测试题含解析
- 快递物流行业收发货服务合同
- 漳州市重点中学2024年物理八上期末达标测试试题含解析
- 2024年广东省广州市绿翠现代实验学校九上数学期末学业质量监测模拟试题含解析
- 四川省绵阳市名校2025届八上物理期末质量跟踪监视试题含解析
- 四川省广元苍溪县联考2025届九年级数学第一学期期末调研模拟试题含解析
- 辽宁省铁岭市2024年化学九年级第一学期期末达标测试试题含解析
- 山东省枣庄市第三十二中学2024年九上化学期末经典试题含解析
- 2025年暑期教育系统教师远程培训工作总结范文
- 2025至2030中国细胞健康筛查和和健康测试行业市场深度研究及发展前景投资可行性分析报告
- 2025发展对象考试题库带有答案
- 肝癌介入术护理课件
- 企业安全生产内部举报奖励制度
- 胸痛的诊断与处理
- 户外反洗钱宣传活动方案
- 声带小结护理查房
- 2025届山西中考语文真题试卷【含答案】
- 闵行区2024-2025学年下学期七年级数学期末考试试卷及答案(上海新教材沪教版)
- 2025至2030中国柴油内燃机行业发展趋势分析与未来投资战略咨询研究报告
- 水政执法水行政处罚课件
评论
0/150
提交评论