17.2.2勾股定理及其逆定理.ppt_第1页
17.2.2勾股定理及其逆定理.ppt_第2页
17.2.2勾股定理及其逆定理.ppt_第3页
17.2.2勾股定理及其逆定理.ppt_第4页
17.2.2勾股定理及其逆定理.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、17.2 勾股定理的逆定理,第十七章 勾股定理,如图,在一个高为6m,长为10m的 楼梯表面铺地毯,则地毯长度至少多长?,一、小测:,6m,10m,解:,A,?,B,C,在RtABC中,根据勾股定理,(1)两条直线平行,内错角相等 (2)如果两个实数相等,那么它们的平方相等 (3)如果两个实数相等,那么它们的绝对值相等 (4)全等三角形的对应角相等,说出下列命题的逆命题这些命题的逆命题成立吗?,逆命题: 内错角相等,两条直线平行. 成立,逆命题:如果两个实数的平方相等,那么这两个实数相等. 不成立,逆命题:如果两个实数的绝对值相等,那么这两个实数相等. 不成立,逆命题:对应角相等的两个三角形是

2、全等三角形. 不成立,感悟: 原命题成立时, 逆命题有时成立, 有时不成立,一个命题是真命题,它逆命题却不一定是真命题.,驶向胜利的彼岸,定理与逆定理,我们已经学习了一些互逆的定理,如: 两直线平行,内错角相等;内错角相等,两直线平行.,如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.,下面的三组数分别是一个三角形的三边长a,b,c:,5,12,13; 3,4,5; 6,8,10。,动手画一画,勾股定理的逆命题,勾股定理,互逆命题, C=900, AB2= a2+b2, a2+b2=c2, AB 2=c2, AB =c, 边长取

3、正值, ABC ABC(SSS), C= C(全等三角形对应角相等), C= 900,已知:在ABC中,AB=c BC=a CA=b 且a2+b2=c2,求证: ABC是直角三角形,证明:画一个ABC,使 C=900,BC=a, CA=b,在 ABC和 ABC中, ABC是直角三角形(直角三角形的定义),勾股定理的逆命题,定理,勾股定理的逆命题,勾股定理,互逆命题,逆定理,定理,在ABC中,已知, AB = 13,二、新课:,解:,BC = 12,CA = 5,判断ABC的形状?,5,12,13, ABC是直角三角形,勾股定理的逆定理:,直角三角形,例1 判断由a、b、c组成的三角形是不是直角

4、三角形: a15 , b 8 , c17,分析:由勾股定理的逆定理,判断三角形是不是直角三角形,只要看两条较小边的平方和是否等于最大边的平方。,解:1528222564289 172289 15282172 这个三角形是直角三角形,下面以a,b,c为边长的三角形是不是直角三角形?如果是那么哪一个角是直角?,(1) a=25 b=20 c=15 _ _ ;,(2) a=13 b=14 c=15 _ _ ;,(4) a:b: c=3:4:5 _ _ ;,是,是,不是,是, A=900, B=900, C=900,(3) a=1 b=2 c= _ _ ;,像25,20,15,能够成为直角三角形三条边长的三个正整数,称为勾股数.,已知:如图,四边形ABCD中,B900,AB3,BC4,CD12,AD13,求四边形ABCD的面积?,S四边形ABCD=36,尝试应用,3.如图,点A是一个半径为 400 m的圆形森林公园的中心,在森林公园附近有 B .C 两个村庄,现要在 B.C 两村庄之间修一条长为 1000 m 的笔直公路将两村连通,经测得 AB=600m,AC=800m,问此公路是否会穿过该森林公园?请通过计算说明.,第3题图,3、ABC三边a,b,c为边向外作正方形,正三角形,以三边为直径作半圆,若S1+S2=S3成立,则,是直角三角形吗?,A,C,a,b,c,S1,S2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论