泵站相关知识汇总_第1页
泵站相关知识汇总_第2页
泵站相关知识汇总_第3页
泵站相关知识汇总_第4页
泵站相关知识汇总_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、泵站工程泵站及辅助设备一、泵房的倾斜与纠偏处理 在洪涝灾害中,由于堤防溃口,水泵超高扬程,电动机超负荷以及外江水位超驼峰原因使得泵站不能正常排水,泵房较长时间浸泡在涝水或渍水中,地基产生湿陷;或由于泵房地基流土管涌遭受渗透变形等因素,都可能导致泵房的倾斜。泵房倾斜有三种基本形态,即单向(纵向或横向)倾斜,双向倾斜和扭曲三种,泵房倾斜引起的直接后果是主轴不垂直,泵站主机组无法运行,闸门等起吊设备也无法正常启闭,因此,需要采用纠偏的方法,或采用纠偏与结构补强结合的办法,对倾斜泵站进行处理。 1.房屋建筑中已使用的纠偏处理方法 泵房纠偏是一项技术难度高,风险大的非常规工程,纠偏 能否成功,首先在于根

2、据倾斜建筑物的具体情况、土质条件和倾斜原因等选择合适的方法。目前在房屋建筑中已经使用过的纠偏处理方法可概括为以下几类: (1)地基土促沉。对建筑物沉降较小一侧的地基土采用某种方法促使其沉降,使倾斜建筑物两侧的沉降差降低至允许的范围内,地基土促沉的方法有掏土(砂)法、沉井冲水排土法、加载法和地基应力解除法等。 (2)地基土限沉。对建筑物沉降较大一侧的地基土采用加固的方法,以限制其继续下沉。限沉纠偏的方法主要有锚杆静压桩法、静压桩法、树根桩法、旋喷桩法、石灰桩法、板桩围护法及灌桩法等。在使用此类方法时应注意不能因“加固”而对原来就较软弱的地基土产生新的扰动,否则将形成新的附加沉降,增大纠偏工作量,

3、甚至造成纠偏困难。 (3)结构物顶升。利用千斤顶将倾斜建筑物沉降较大侧顶升(或侧向顶推)复位,这种方法较适合于如柱子等局部纠偏,整体纠偏时所需费用较大。 (4)基础减压和加强刚度法。通过改变基础结构,以减小和调整建筑物基底压力,最终达到控制和调整地基土不均匀沉降的目的,如将单独基础或条形基础联成整体或将筏式基础改建成箱形基础等。 (5)综合法。根据需要同时或先后采用一种或几种纠偏方法对倾斜建筑物进行纠偏,如加压卸载法(沉降较小侧加载,沉降较大侧卸载)、浸水加压法等。 2.建筑物纠偏处理中广泛采用的地基应力解除法。 (1)地基应力解除法纠偏的基本原理。采用地基应力解除法纠偏,是在倾斜建筑物原沉降

4、较小的一侧布设密集的大直径钻孔排,有计划、有次序、分期分批地在适当的钻孔内适当的深度处掏出适量的软弱淤泥,并配合各种促沉措施,使地基应力在局部范围内得到解除,促使软土向该侧移动,从而增大该侧地基沉降量。与此同时,在原沉降较大一侧则严格保护基土不受扰动,避免纠偏施工中发生附加沉降,最终达到纠偏的预期目标,并兼收限沉效果。 (2)地基应力解除法的施工方法。地基应力解除法纠偏的施工大致可以分为定孔位、钻孔、下套管、掏土、孔内作必要的排水和最终拔管回填等几个阶段。孔位(即孔距选定)按泵房的平面形式、倾斜方向和倾斜率大小、泵房结构特点以及土质埋藏条件而定。钻孔用特制机具钻进,孔径尺寸按有效解除应力的需要

5、,一般采用400mm。孔深及套管埋入深度(即管长)根据掏土部位而定。掏土使用大型麻花钻或大锅锥。掏土次数、数量及各次掏土间隔时间按实测沉降和倾斜资料,结合具体建筑物的施工方案灵活地掌握。孔内排水采用潜水泵,作为临时降低孔壁水压力以促进挤淤之用,但不宜长时间地抽水,以防止整个泵房的沉降增大。拔管应插花进行,并及时回填合适的土料。在纠偏处理全过程中,应尽量使地基土布孔范围内变形均匀,变形大小也应受到控制。另外,还需备用一系列促沉或隔离措施,以备需要时选用。 一般情况下,每次掏土时泵房的纠偏位移十分灵敏,掏土量与纠偏量基本持平。施工中,应自始至终用频繁的沉降、倾斜观测进行监控,即采用所谓“情报化施工

6、法”,及时地将观测成果反馈,供决策者调整施工计划时参考,以确保建筑物的安全。二、泵站建筑物地基的渗透破坏与修复 对于堤身式泵站,由于泵房直接抵挡外江水位,在内外水位差的作用下,将在泵房地基及两端大堤土体内产生渗流。渗流对泵站建筑物产生两方面的影响,其一是对泵房底板产生向上的渗透压力,减轻了泵房的有效重量,影响其抗滑稳定;另一方面,当渗透坡降或渗透流速超过某一限度时,会引起土体的渗透变形。因此,在洪涝灾害中部分泵站水工建筑物,如进水池和前池的坍陷破坏就是由于这种渗透变形不能终止而继续发展的结果。 在对遭受渗透破坏的泵站建筑物进行修复前,首先应检查防洪抢险过程中造成坍陷的管涌和流土的进水口,结合大

7、堤的地质情况进行堤防加固,然后根据特大洪水过程中的水位资料,重新拟定泵房的抗渗长度及地下轮廓线,必要时,采用合适的防渗措施。 (一)泵房防渗长度校核及地下轮廓线设计 所谓泵房的地下轮廓线,是指进水池、泵房、出水池等不透水结构的垂直横断面与地基的接触线。在泵房进出水池水位差H的作用下,泵房地基内产生渗流,并从进水池中的排水孔逸出,泵房的地下轮廓线即为渗流的第一根流线,其长度称为泵房防渗长度。 泵房的防渗长度L取决于进出水池的水位差H,即LCH式中C:渗径系数,参照水闸设计规范SD133-84选用,如表33。表33渗径系数C值表排水条件地 基 类 别粉砂细砂中砂粗砂中砾细砾粗砾夹卵石轻粉质砂壤土砂

8、壤土壤土粘土有反滤层9-137-95-74-53-42.5-37-95-73-52-3无反滤层-4-73-4 所谓地下轮廓布置,是根据设计要求和地基特性,并参照已建工程的实践经验,确定泵站基础防渗的轮廓形状和尺寸。对于水毁工程的修复,由于泵房基础不能改变,这里的地下轮廓布置只能根据现有泵站工程的实际情况,结合进出水池的修复与重建进行,布置的总原则是防渗与导渗相结合,即在泵站出水侧布置防渗设备,用来延长渗径,减小底板渗透压力,降低泵房基础内平均渗透坡降;在泵站进水侧布置排水和反滤层,使进入地基的渗流尽快地安全排出,以减小渗透压力和防止发生渗透变形。 不同土壤特性的地基对地下水轮廓布置的影响: (

9、1)粘性土地基:渗透系数小,粘着力强,不易产生管涌;但摩擦系数小,不利于泵房抗滑稳定,因此,防渗布置主要考虑降低渗透压力,增加泵房的抗滑稳定性。为此,可将排水设备延伸到泵房底板下,同时,为防止打桩造成粘土的天然结构遭受破坏,粘土地基一般只设水平铺盖而不用板桩。 (2)砂性土地基:其摩擦系数较大,渗透性较强,因此对泵房抗滑稳定有利,但同时也易产生管涌。防渗布置主要考虑防止产生渗透变形。当砂层较厚时,可采用铺盖与板桩结合的布置形式,排水设备布重在泵站进水池内,必要时,还可在铺盖始端增设短板桩以加长渗径,如砂层较薄(45m以内),下面有相对不透水层时,可用板桩将砂层切断。 对于粉砂地基,为了防止地基

10、液化,通常采用封闭式布置,即用板桩将泵房四周围护起来,板桩长度应超过粉砂地基的液化深度。 (3)特殊地基:在弱透水的地基下有透水层,特别是当该层含有承压水时,应设置穿过弱透水层的铅直排水法,以便将承压水引出,防止进水侧土层被承压水顶起甚至发生流土。当地基为不同性质的冲积层,而水平向的渗透性大于铅直向的渗透性时,也应布置铅直排水以降低层间渗透压力。(二)泵站防渗排水设施设计1.铺盖 铺盖一般布置在出水池后排水渠首段,主要用来延长渗径,减小渗透坡降和渗透流速。铺盖要求在长期使用下不透水,并能适应泵房地形的变形,其长度可取为泵站最大水头的12倍,混凝土铺盖长度不宜超过20m。 (1)粘土及粘壤土铺盖

11、。一般用于砂性土地基,下游端最小厚度一般为0.60.8m,然后向泵房侧逐渐加厚。在与出水池连接处,一般不宜小于1.5m。 铺盖与出水池连接处应加强处理,否则易沿其接触面产生渗漏,一般在连接处将铺盖加厚做成大梯形断面形式,并将底板前端做成倾斜面,使粘土能借自重及其上荷重与底板紧贴,铺盖与底板间需铺设油毛毡等柔性止水设备。另外,为了保护粘土铺盖不受水流冲刷,表面应加设砌石或混凝土保护层。当保护层为干砌块石时,还应在保护层与铺盖之间铺设反滤层,以防止粘土颗粒从干砌块石缝隙中流失。 (2)混凝土、钢筋混凝土及沥青混凝土铺盖。在粘性土地基透水性较小及铺盖需兼作阻滑板时,可采用混凝土或钢筋混凝土铺盖,其厚

12、度一般为0.40.6m,与出水池连接处加厚至0.81.0m,并用沉陷缝与出水池底板分开,缝内设止水。厚房长度较大时,顺水流方向也应设置沉降缝和止水,分缝应与泵房分段相一致,以防止铺盖开裂。 沥青混凝土铺盖通常选用6号石油沥青作胶结剂,用沥青、砂、砾石和矿物粉按一定的配合比加热拌合,然后分层压实而成。其厚度一般为510cm,与进水池底板连接处适当加厚。 2.板桩板桩通常设在出水侧,主要用来延长渗径,其材料有木材、钢筋混凝土及钢材等,现多用贯入式预制钢筋混凝土板桩,厚约1015cm,宽5060cm,该桩最适于河漫滩沉积地基。板桩长度应根据防渗效果好和工程造价低的原则,并结合施工方法来确定。当不透水

13、层埋深较浅时,可用板桩将透水层截断,并插入不透水层至少1.0m;若不透水层埋深很深,板桩长度可取为泵站最大水头的0.71.2倍。 3定喷板墙用高压定向喷射灌浆法构筑防渗板墙,是将特制水、气、浆三管喷射装置插入预先钻好的孔中,固定好喷射方向,然后边喷灌边提升,依靠高速水气射流切割土层形成沟槽,利用压缩空气的掺搅升扬作用把大部分上层颗粒带出地面,并通过浆液的充填、渗透、挤压和固结作用而形成具有一定宽度和厚度的防渗板。定喷板墙的厚度一般为513cm,单向喷射的有效宽度为1.52.5m,双向喷射为单向喷射的两倍。 4.齿墙及截水槽进出水池及泵房的上下游端均设有齿墙,以延长渗径,同时增加泵房的抗滑稳定。

14、其深度一般为1.02.0m,当透水层较薄时,可用粘土或混凝土截水槽将透水层截断,截水槽嵌入不透水层的深度应不小于1.0m。 5.排水及反滤层排水设施一般是用直径12cm的卵石,砾石或碎石等铺在渗流溢出处,层厚2030cm。为防止地基发生渗透变形,在排水与地基接触处应设反滤层。反滤层和排水结合在一起,常由三层不同粒径的砂、砾石及碎石组成,粒径自下而上逐渐加大,每层厚度约2030cm,反滤层长度一般为510m,反滤层上部设置铺盖,铺盖上设5cm的排水孔,呈梅花形布置。近年来,土工织物用作反滤材料十分广泛,其透水性和反滤性能好,其设计标准为: 防止管涌要求Oed85 渗流畅通要求Oed15及Kf(1

15、10)K 不均匀性要求Oe2.3d30(无纺)或1.4d50(有纺) 对于粘土 Oe0.08mm式中,Oe为等效孔径对于无纺的取Oe=O90;有纺的取Oe=O95;d15、d50、d85为被保护土料的特征粒径(mm);Kf为土工织物的渗透系数;K为被保护土层的渗透系数。三.、进出水建筑物及泵房的裂缝处理 导致泵站建筑物钢筋混凝土裂缝的主要原因是两类荷载,一是外荷载产生的应力,包括外荷载的直接应力及由于外荷载作用产生的结构次应力,二是由于变形变化而引起的荷载,如结构由于温度变化导致的收缩与膨胀、地基不均匀沉陷等因素。在洪涝灾害中,泵站进出水池、进出水流道和泵房裂缝主要是由于地基的渗透变形所引起的

16、,这种裂缝通常属于贯穿性的,其走向与沉陷走向一致。裂缝修理方法的选择及裂缝的表面处理和内部处理的方法等详见本书第五章第二节。关于流道的断裂加固和修复,目前实用的措施有: 1.地基加固 (1)当流道所穿越的大堤堤身不高,断裂发生在管口附近时,可直接开控堤身或岸坡进行地基处理。 (2)当断裂发生在流道中部,全部开挖处理比较困难,且洞径较大时,可在洞内钻孔进行灌浆处理。灌浆前要将断裂处用混凝土、钢筋混凝土或钢环封闭好。 (3)在进行基础加固的同时,管身应设置沉陷缝。沉陷缝的止水结构一般用止水片和多层油毡组成。 2.流道结构补强对于产生大范围的纵向裂缝、严重的横向断裂、以及局部冲蚀破坏的流道,凡是影响

17、结构强度的均应采取加固补强措施,这些措施包括: (1)加套管或内衬 适用于人工能在洞内操作的情况,套管可采用铸铁管或钢管,内衬可采用钢板。 (2)外包加固 适用于埋藏不深、且直径较小的管道。可外包混凝土或浆砌块石、钢筋混凝土衬圈。 (3)顶管处理 当管道严重破坏,且修复十分困难时,需另建新管,建新管可考虑采用顶管法,这是目前更换损坏管道的一种较好的方法。四、大型泵站超驼峰运行 20世纪60年代兴建的大型排水泵站,大多数采用虹吸式出口水流道破坏真空的断流方式。在泵站设计时,按外江设计低水位淹没出口的要求确定驼峰顶部的高程,而当外江洪水出现超驼峰水位时,则必须关闭流道出口的防洪闸,以防止江水倒灌。

18、此时若排水区发生渍涝,即使水泵机组的扬程和功率能够满足运行要求,也无法开机排水。1998年长江洪水期,仅湖北省就有36座泵站因此而被迫停泵。 解决大型泵站超驼峰运行的难题,归结起来就是解决以下两个问题:在外江洪水位超驼峰的超常条件下,如何平衡安全地启动轴流泵机组;安全可靠地断流以防止事故停泵时大量江水倒流及机组倒转出现危害性的飞逸转速。在认真总结工程经验和多年科学研究的基础上,武汉水利电力大学泵及泵站教研室有针对性提出了压缩空气阻水断流的新技术。较好地,切实有效地解决了大型虹吸式出流的轴流泵站在超驼峰条件下正常运行的难题。不仅安全可靠,而且经济实用。所谓压缩空气阻水断流即:通过适当的工程措施向

19、虹吸管顶部注入压缩空气,把虹吸管出水侧管内水位压低到驼峰下缘高程。由于压缩空气保持稳定的压力,虹吸管内的水位不会上升,所以,既便开启防洪闸,江水也不会倒流导致水泵倒转,在闸门开启的情况下起动机组,随着水泵转速和流量的增大,管内的空气相应由排气管排出。由于本方案设计了稳压排气管,从而限制了因起动过程中管内空气被上升的水体压缩造成过高的压力,致使水泵进入不稳定区而诱发的水泵机组的强烈振动。 这种技术1998年已分别在湖南和湖北两省的一些泵站应用,获得了满意的结果,例如湖北汉川县民院闸溃堤堵口后,汉江约有120m3/s流量流进内湖,起动汉川二站和汾水泵站的大型水泵机组向汉江排水,而汉川一站由于汉江水

20、经超驼峰底最大达2.7m,6台水泵不仅不能开机排水,由于流道出口防洪闸关不严,江水倒灌,倒灌流量约为30m3/s,相当一台单机功率为2800kW机组的排水量,单就耗电费一项计算每天约13000元,采用压缩空气断流,无需增加任何设备,原有的水环真空泵改作压缩机运行,用于改接管道的工时材料,估计不足1000元,而向驼峰注入压缩空气后,由于平衡了闸门正面的水压力,减小了闸门槽的摩擦力,在自重作用下,降落到位,只有少量漏水,避免江水大量倒灌。很好地配合抗洪斗争,取得了重要的经济效益和社会效益。 现以湖北省嘉鱼余码头泵站为例说明大型泵站超驼峰断流措施: 1.压缩空气系统设计 根据建站以来超驼峰运行记录,

21、出现过最高的超驼峰水头为3.52米,因此要求注入管内的压缩空气达到3.52米的压力,江水不会通过虹吸管倒流,由于要求压缩的压力很低,不宜直接选用现有的空气压缩机,而是根据现场的条件和要求,专门设计了一种新型的射流压缩机。这种压缩机的特点是结构简单,价格低廉,运行可靠,管理方便。压缩空气联接系统,该系统由1台IB150-125-250型离心泵(配17.5kw电机动)向射流压缩机供给压力水,压缩机吸入的空气与压力水混合,通过干管和闸阀向准备起动的机组虹吸管顶部注入水气混合流,水气在虹吸管内自动分离,气体聚集在虹吸管顶部,气压逐渐升高,直到水面气压达到相当于超驼峰水深的压力即可将防洪闸提起,水面气压

22、由模拟外江水位的水池和排气管来控制,实际上是由排气管的淹没深度来控制水面的气压,水泵起动后气压升高,排气管即自动排气,排气流量随水泵流量的增大相对应。 2.射流压缩机 射流压缩机的性能,根据计算,当压缩空气的压力达到0.36kPa,压缩空气流量Q=420m3/h,压缩空气流量也随压缩空气压力的变化而变化,估计管内空体积为200m3,起动一台水泵所需的压缩空气约60m3,考虑系统漏气损失,估计起动一台机组所需压气时间不超过10分钟。 3.机组起动操作程序 (1)检查虹吸管出口段是否充水至驼峰下缘。一般情况下由于闸门止水不严防洪闸处于关闭状态下,出口段也会充水至驼峰下缘。 (2)起动泵房供水泵向蓄

23、水池充水,充到60m3的水量。 (3)根据出水池水位与驼峰下缘离程之差h,向水池充水,使排气管淹没深度h=h+0.05m(0.05为考虑水面波动的安全值)。(4)打开准备起动机组的闸阀。(5)起动离心泵,射流压缩机开始吸气,并将水气混合液通过干管和闸阀注入虹吸管,当虹吸管内气压达到h即可开启防洪闸。(6)起动轴流泵,当电动机达到牵入同步的转速时立即切断离心泵的电源,这样可以保持恒定的气压,防止突然降压,虹吸管出口段的水翻越驼峰向内侧倒冲,增大水阻力矩,延迟机组牵入同步的时间。待虹吸管内空气完全排除后,机组即转入稳定运行,起动过程即告结束。 4.机组突然失电防止倒流倒转飞逸状态的措施 在正常情况

24、下停机,一般是先将防洪闸部分关闭,在机组出现振动或电机出现超载的临界状态下迅速切断主电机的电源,防洪闸在重力作用下关闭,预计可在水泵开始倒流之前关至终点。但是,如果发生事故跳闸或电网突然断电,则闸门只能从断电开始下落,关闭活塞行程2.5米,按失电后8秒内关闭的要求,通过现场试验确定增加的配重,这种方案比增加蓄能罐的方案简单可靠。五、污物及清污污物是指浮在水体表面和水体中的杂物,如水草、白色污染物、水块及其它杂物。近年来由于水体污染的加剧,水体富营养化程度提高,一些水生植物如水葫芦和一些藻类植物在引水渠道、前池等内部生长、繁殖异常迅速,严重影响过水构筑物的过水能力。另外,废弃塑料袋、瓶、盒等白色

25、污染物也危害猖獗,增加拦污栅水头损失,降低进水池的效率,增加泵站能耗,严重时泵站不能正常运行。 从长期治理的角度来看,应堵住源头,会同有关环保部门,严格控制有关污染物的排放量改善水质。近期应着眼于改善泵站拦污栅的布置并对污物进行清理。(一)改善拦污栅的布置拦污栅的型式和尺寸不仅影响工程投资和泵站能耗,而且对污物的清理有很大影响。如我国大型轴流泵站的拦污栅大部分是垂直设置在进水流道的进口处,由于利用了进水流道的隔墩作为支承,因而可以节约工程投资。但此类布置拦污栅处的流速较大,清污工作的危险性大,工作条件差,污物清理困难,并且污物的堵塞会直接影响水泵的进水流态,使水泵在偏离设计工况点工作,引起机组

26、的振动和噪声。一般来说,拦污栅应布置在平均流速为0.50.8m/s的断面上,以设置在引渠末端为宜,它比设在进水流道或进水池前安全。而且,由于引渠末端断面窄,工程投资省,同时也便于布置清污机械。 对拦污栅还要正确设计,其强度和栅距要适中。(二)清污方法及设备目前,对污物的处理尚没有较好的化学和生物方法,一般是采用人工和机械的方法进行清理。人工清污主要用于水草和杂物不多的小型泵站。对大型泵站,应加大投入,设置专门的清污机械和相应的转运设备来处理污物。目前自动清污机主要有:自动耙式清污机、大型自动清污机、旋转滤网式清污机、牵引耙式清污机及牵引车式清污机等等。它们的特点及适用范围各不同,应结合实际情况

27、来选用。六、淤积及清淤 淤积主要指沉积在外江、内湖、渠道及进、出水构筑物等底部的泥沙、卵石和砖块等沉积物。在洪灾多发之地,由于水土流失的加剧和洪水的泛滥,许多江河和湖泊淤积严重,部分河段的平均淤积深度达每年0.5m。严重的淤积危害了泵站的安全运行,有些泵站甚至不能运行。 有关清淤施工问题可参见水利电力行业标准疏浚工程施工技术规范,选择清淤设备时应考虑以下几个问题: 1.被挖掘土的种类和性质; 2.挖槽尺度和排泥方法; 3.疏浚工程量和工程时间; 4.挖泥船或其它挖泥设备的性能。 对挖泥船或其它的挖泥设备,目前应用于内河和湖泊的主要有泥斗式(机械式)和吸扬式(水力式)两大类。泥斗式包括铲斗式、抓

28、斗式及链斗式等。铲斗式和抓斗式适宜于硬质土,但产量太低。链斗式对土质适应能力强,挖后水底平整,但所占水域面积大,须要铺助设备多,且振动和噪声很大,国外已很少使用。吸扬式挖泥船主要分为绞吸式、潜水泵式、气升式及射流式等等。绞吸式挖深有限,但经济效益高,在国内外应用极为广泛。潜水泵式挖深适中,经济效益好,以往的电机密封易损坏,工作可靠性差。但近代的潜水电泵机械密封技术有很大提高,再加上增加了很多监控设备,潜水电泵的可靠性和使用寿命有显著提高。气升式挖深大,对水底扰动小,但效率很低。射流式结构简单、成本低、挖深大、维护方便、便于自制,但效率稍低于绞吸式,它具有较好的实用价值。其它还有一些水陆两用及陆

29、地上行走的挖泥设备。离心泵的分类方式类型特点一览表 离心泵的分类很多,它是依据不同的结构特点而划分的。一、按工作叶轮数目来分类 1、单级泵:即在泵轴上只有一个叶轮。 2、多级泵:即在泵轴上有两个或两个以上的叶轮,这时泵的总扬程为n个叶轮产生的扬程之和。二、按工作压力来分类 1、低压泵:压力低于100米水柱; 2、中压泵:压力在100650米水柱之间; 3、高压泵:压力高于650米水柱。三、按叶轮进水方式来分类 1、单侧进水式泵:又叫单吸泵,即叶轮上只有一个进水口; 2、双侧进水式泵:又叫双吸泵,即叶轮两侧都有一个进水口。它的流量比单吸式泵大一倍,可以近似看作是二个单吸泵叶轮背靠背地放在了一起。

30、四、按泵壳结合缝形式来分类 1、水平中开式泵:即在通过轴心线的水平面上开有结合缝。 2、垂直结合面泵:即结合面与轴心线相垂直。五、按泵轴位置来分类 1、卧式泵:泵轴位于水平位置。 2、立式泵:泵轴位于垂直位置。六、按叶轮出来的水引向压出室的方式分类 1、蜗壳泵:水从叶轮出来后,直接进入具有螺旋线形状的泵壳。 2、导叶泵:水从叶轮出来后,进入它外面设置的导叶,之后进入下一级或流入出口管。 平时我们说某台水泵属于多级泵,是指叶轮多少来讲的。根据其它结构特征,它又有可能是卧式泵、垂直结合面泵、导叶式泵、高压泵、单面进水式泵等。所以依据不同,叫法就不一样。另外,根据用途也可进行分类,如油泵、水泵、凝结

31、水泵、排灰泵、循环水泵等。离心泵的分类方式类型特点一览表分类方式类 型离心泵的特点按吸入方式单吸泵液体从一侧流入叶轮,存在轴向力双吸泵液体从两侧流入叶轮,不存在轴向力,泵的流量几乎比单吸泵增加一倍按级数单级泵泵轴上只有一个叶轮多级泵同一根泵轴上装两个或多个叶轮,液体依次流过每级叶轮,级数越多,扬程越高按泵轴方位卧式泵轴水平放置立式泵轴垂直于水平面按壳体型式分段式泵壳体按与轴垂直的平面部分,节段与节段之间用长螺栓连接中开式泵壳体在通过轴心线的平面上剖分蜗壳泵装有螺旋形压水室的离心泵,如常用的端吸式悬臂离心泵透平式泵装有导叶式压水室的离心泵特殊结构管道泵泵作为管路一部分,安装时无需改变管路潜水泵泵

32、和电动机制成一体浸入水中液下泵泵体浸入液体中屏蔽泵叶轮与电动机转子联为一体,并在同一个密封壳体内,不需采用密封结构,属于无泄漏泵磁力泵除进、出口外,泵体全封闭,泵与电动机的联结采用磁钢互吸而驱动自吸式泵泵启动时无需灌液高速泵由增速箱使泵轴转速增加,一般转速可达10000r/min以上,也可称部分流泵或切线增压泵立式筒型泵进出口接管在上部同一高度上,有内、外两层壳体,内壳体由转子、导叶等组成,外壳体为进口导流通道,液体从下部吸入水泵技术 中国水泵技术的发展与展望一、水泵制造企业概况 生产电厂(包括核电)、冶金、石化等部门用的具有高技术含量泵的国企(如沈泵、石泵、湘电长沙水泵、上海电力修造厂等)维

33、持生存, ITT 、 KSB 、茬原等世界著名泵企业(如上泵 KSB 、 ITT 南京古尔兹、嘉立特茬原、博泵茬原、大耐苏尔寿(海密梯克、里瓦赫伯特)、佛泵安德里兹、大连帝国、上海尼可尼等)逐步进入我国,民营泵企业快速发展。现在国内泵企业约 1 000 家,占世界泵企业 10 000 家的 1/10 ;国内泵产值 2004 年约 220 亿人民币,约占世界泵产值 270 亿美元的 1/10 ,世界十大泵企业产值约占世界泵总产值的 22% ,我国十大泵企业的产值也约占全国泵产值的 22% 。 世界 2004 年按销售值排列十大泵企业(引自沈泵所 2005年上海行业协会资料): 1 、美国 ITT

34、 ( 17. 01 亿美元); 2 、美国 FLOWSERVE ( 10.3 亿美元); 3 、丹麦格兰富( 10.1 亿美元); 4 、日本荏原( 10.0 亿美元); 5 、德国 KSB ( 9.0 亿美元); 6 、瑞士苏尔寿( 6.83 亿美元); 7 、英国威尔( 5.84 亿美元); 8 、德国威乐( 5.84 亿美元); 9 、美国 IDEX ( 4.27 亿美元); 10 、美国 PENTAIR ( 4.0 亿美元) 国内 2004 年按销售值排列前十大泵企业(因统计不全,可能有误,仅供参考): 上海凯泉泵业集团;沈阳水泵厂有限公司;上海连成泵业有限公司;上海东方泵业有限公司;

35、上海KSB ;上海电力修造厂有限公司;大耐泵业有限公司;石家庄泵业有限公司;湘电长沙水泵厂有限公司;博泵科技有限公司。 国内泵产值年增长率10.5% ,约为国家经济增长率的1.5 倍,是世界泵年增长率4.3% 的2.5 倍。随着建筑、电力、钢铁、石化、环保工业的发展和向第三世界出口泵产品的增加,这种快速增长的形势将保持几年。 从地区上在看,江浙沪发展最快,水泵年产值约占全国的 60% ;上海泵年产值约占全国的 20% ,按销售值排列全国前十名有半数在上海,因而上海逐渐成为全国泵业的中心。二、水泵技术的现状和发展 1、我国泵产品图样的来源可分为联合设计、引进、自行开发等几种 (1)联合设计产品

36、以沈阳水泵研究所 为主的研究单位,20 世纪 6080 年代,组织有关泵厂进行了许多种泵的联合设计。如 IS (IB)型单级单吸离心泵; IH 型化工泵; S(SH)型双吸离心泵; D ( DG )型节段式多级泵; W 型旋涡泵; Y 型油泵; JC 型深井泵; HW 型混流泵; QJ 型深井潜水泵; IR 型热水泵; BPZ 型喷灌自吸泵; FY 型耐腐蚀液下离心泵; 3G 型三螺杆泵等。 这些产品当时都是国内的主导产品,至今仍在生产,但是有些产品的结构(造型)、性能指标比较落后,应当逐步用新型产品替代。 (2)引进产品 80 年代以前我国引进的泵技术很少,到改革开放初期,大量从国外引进泵技

37、术,并随着外国泵公司以合资或独资的形式陆续进入我国,也带进了一些新的泵产品技术。例如: 沈泵(上泵)德国 KSB 公司的锅炉给水泵;天津工业泵总厂德国阿尔维勒公司的螺杆泵;石泵沃尔曼的渣浆泵;石泵(天津电机厂)德国里兹公司的井用潜水电泵;上海电力修造厂英国威尔公司的锅炉给水泵;上海水泵厂 KSB 公司的冷凝水泵;长沙水泵厂日本日立公司的冷凝水泵;大连耐酸泵厂瑞士苏尔寿公司的 CZ 、 ZA (ZE)等化工流程泵;上海水泵厂泵美国德来赛公司的污水泵;佛山水泵厂德国西门子公司的水环真空泵;上海水泵厂KSB 公司的热水泵、船用泵;天津工业泵总厂日本大晃公司的船用泵;南京深井泵厂德国 ABS 公司的潜

38、污泵;长沙水泵厂美国英格索尔公司的大型立式斜流泵;上海第一水泵厂英国 MJ 公司的高扬程多级离心泵;襄樊五二五厂法国 HS 公司的磷酸泵等。 引进的这些泵产品,技术比较成熟,性能比较先进,对推动我国泵技术的发展起了重要作用,成为我国泵产品的主体,至今仍大量生产。其中有的产品在结构或性能方面也存在问题,应进一步改进。 (3)外国在华合资(独资)泵企业的产品 例如:沈阳飞力潜水排污泵;苏州格兰富冲压泵;上海 KSBOmega(RDL) 双吸泵、锅炉给水泵、冷凝泵;嘉立特(茬原)化工流程泵;佛山(安德里兹)纸浆泵;南京古尔兹 ISO 型单级单吸离心泵、 P 型节段式多级离心泵;大连帝国屏蔽泵;兰州耐

39、驰螺杆泵。 这些产品的质量大都比国内产品好,尽管价格高,但销售情况很好。 (4)自行开发产品 AY 油泵; TSWA 多级离心泵; ZJ 渣浆泵;管道泵;直联离心泵;高楼给水泵;空调泵;潜水排污泵;立式排污泵;潜水轴流泵(混流泵);双吸泵;消防泵;纸浆泵等。 这些产品大部分通用化、标准化程度不高,性能也有待进一步提高。 2、关键水泵产品从部分进口到现在基本全部国化 由于引进产品和国际水泵著名制造企业的进入,我国泵的生产能力显著提高。国民经济部门的主要关键用泵基本上都可以生产。例如:超临界锅炉给水泵(温度压力 25 35MPa );乙烯和加氢装置用高速泵、高压多级泵;钢厂高压除鳞泵;东深、南水北

40、调工程用大型调水泵;矿用大流量高扬程( 1000m )排水泵;电厂用烟气脱硫泵;炼厂用高温油浆泵。 3、以CAD为主的新技术广泛应用 (1)水泵的模具、叶片和重要零件开始用数控机床加工,从而可以提高泵的制造质量,图 1 是用数控铣床加工轴流泵叶片和用于加工的叶片三维图。 (2)水泵水力设计与绘型软件逐渐代替人工计算和绘图 有人问用这个软件设计的泵效率有多高,这是外行人说的话,再好的软件也要人去使用,可以溶入设计者的设计思想和经验,而且快速、准确。图 2 是用 JP1 软件设计的螺旋离心泵叶轮水力图,设计该图只需 10min ,人工设计可能要两天。 (3)泵内流场计算从准三元非黏性流动向全三元黏

41、性流动进展 准三元非黏性流动计算的主要方法是 S1 、 S2 两类流面迭代,它是把三维流动降维成二维,也就是用子午面(轴面)和任意转面(流面)上的流动进行迭代求解,解决三维流动问题。由于把复杂的三维流动简化成二维求解,使得解的精度受到影响。 近年计算流体动力学( Computational Fluid Dynamics ) , 简称 CFD 问世,为流体机械流场计算提供了新的思路和手段。 (4)优化设计方法 为了提高泵的性能,许多学者进行了优化设计方法研究。归纳起来主要有以下几种方法:以优秀模型统计资料为基础的速度系数优化法;以水力损失最小为目标的损失极值优化法;以某一指标为目标函数的准则筛选

42、优化法。值得说明的是目前的优化设计方法,可能只对具体泵的设计有指导意义。另外 CFD 等先进技术的问世,在很大程度上冲淡了对优化设计的兴趣,近两年研究优化设计方法的学者逐渐减少。 (5)内部流场测量 以前经常采用探针进行测量,一方面控针本身对流动的影响很大,另一方面测量旋转流场的转换装置也很复杂。进一步使用激光多普勒测速仪( LVD ) ,它是用激光照射流动中的粒子,光被粒子散射,根据散射的成度测量流速。这种方法已经成熟并广泛应用,但是一般只测量一点速度的某一分量。现在开始使用粒子图象测速技术( PIV ),其工作原理是在流场中散布示踪粒子,用脉冲片光源照射流场,通过连续两次或多次曝光,粒子图

43、象被记录在底片上,由此获得流场速度分布。这种方法突破传统的单点测量的限制,可瞬时无接触测量一个截面上的速度分布,具有较高的测量精度. 4、无堵塞泵和低比转速泵技术取得进展 (1)我国自行总结出的无堵塞泵设计方法,基本达到实用程度,国内广泛使用 设计方法主要包括:沿流道中线断面变化规律设计双流道叶轮;方格网保角变换方法设计螺旋离心式叶轮;根据叶轮外径、蜗室最大外径和喉部面积三要素设计旋流式叶轮。 (2)低比转速泵理论和设计的研究广泛而深入 无过载设计方法得到推广应用,采用长短叶片和短叶片偏置取得良好效果。 5、轴流泵模型达到国外同类模型的先进水平 2004 年 9 月 25 日至 2005 年

44、1 月 16 日,全国 27 个模型,参加了水利部南水北调工程水泵模型天津同台测试。本次试验领导有力、组织严密、监督公正、数据准确。模型比转速 500 1500 ,基本复盖了轴流泵的使用范围;和原模型相比,效率提高约 2% ,流量提高约 5% 。有 7 个模型的角度平均效率超过 85% ,已达到国外同类模型的先进水平。国家南水北调等重要工程的低扬程水泵,大部分将从这些模型中选用。三、水泵技术发展展望 1、注意发现和开发新领域用泵 泵是一种通用机械,应用非常广泛,而且新领域用泵不断出现。例如:心脏泵、喷水推进泵、计算机冷却泵、空调泵、导热油泵、油气混输泵、烟气脱硫泵、石油平台注水泵等。可能还存在

45、着应当用泵的地方而没有用泵,新的用泵领域也会不断出现,这就需要我们注意发现并致力开发。 2、CFD、PIV等先进技术结合实际开展试验研究 CFD 等新技术的先进性,不可否认,现在各院校都有软件,都在进行计算,研究生 50% 以上的课题都与此有关。一项新技术从发展成熟有一个过程,目前应作为一种解决实际工程问题的辅助手段,与传统设计方法配合使用。另外要尽量结合实际 ,否则就难以成熟和提高。开始阶段不要把题目选得过大,有的选一台泵从进口算到出口,一个泵站从进水池算到出水池,这样的计算结果难以判断。像渣浆泵的磨损部位、进水流道的旋涡部位等很适合用 CFD 和 PIV 技术进行研究。还有,一些大的泵厂应

46、与有条件的院校合作开展这方面的研究工作。 3、重视关键技术和关键产品的研究与开发 要提高泵的技术水平必须解决关键技术问题。例如:渣浆泵磨损机理的研究;高效斜流泵水力模型研究;自吸泵简化结构、提高效率的研究;便于检修的高效、大流量、高扬程矿山排水泵和输油泵的研究开发;新型船用泵的研究开发;大型烟气脱硫泵、煤液化用高温、高压泵的研究开发;屏蔽泵、磁力泵提高可靠性的研究;新型计量泵(隔膜泵)的研究开发;提高部分流泵效率的研究等。 4、树立精品意识,重视标准化、通用化 无锡亿志(新加坡独资)、扬州川源(台资)两个泵公司,利用国内技术、设备生产出可和国外先进产品媲美的泵产品,其原因在于有精品意识。 上海

47、KSB公司的Omega 双吸泵,28 个品种,共用 6 根轴,每种泵装 A 、B 两种叶轮,每种叶轮切割三次外径,这样一来每种泵有 8 条性能曲线,大幅度提高了泵的使用范围。 南京古尔兹生产的 ISO 单级单吸离心泵, 39 个品种,共用 5 根轴,每种泵有 4 条性能曲线,结构紧凑、重量轻、体积小。 我国有些泵厂,有一个订货设计一种泵,做了一年泵,回过头来一看可能是一个泵一个样,制造成本高也就可想而知了。 四、采用复合技术实现泵技术的创新与发展 纵观泵技术的发展,许多是采用了复合技术的结果。例如: (1)离心叶轮和旋涡叶轮的结合,成为离心旋涡自吸泵。 (2)射流喷头和离心泵结合,成为离心射流

48、自吸泵。 (3)水泵叶轮和水轮机转轮的结合,成为水轮泵。 (4)离心泵和活塞隔膜泵结合,构成一种强力自吸泵。 (5)诱导轮和离心轮结合,提高了泵的抗汽蚀性能。 (6)双吸叶轮和单吸叶轮结合,能解决汽蚀和轴向力平衡问题。 (7)长短叶片结合使用,解决叶轮进口堵塞和出口扩散问题。 (8)短叶片向长叶片背面偏署,可防止轴向旋涡和出口流动分离。 (9)下装低扬程叶轮提液,上装高扬程叶轮加压的长轴液下泵(双轮液下泵),解决长轴液下泵制造困难,运行不可靠问题(见图 4 )。 (10)把机械密封的动、静环装在末级叶轮的后密封环处,成为轴向力平衡装置,利用叶轮前、后的压差平衡轴向力,如能解决动、静环的磨损问题

49、,经济效益十分显著。 (11)把平衡盘工作原理移置到叶轮后盖板处,由于形成径向、轴向两个间隙,可以像平衡盘一样自动平衡轴向力。当轴向力大时,叶轮向进口方向移动,轴向间隙增大,叶轮后面的压力降低,叶轮向后移动。反之亦然(见图 5 )。 (12)糊状填料密封,这种密封美国赤士顿公司首先使用,并在我国销售,它是由石墨、纤维、四氟乙烯、硅胶等组成的糊状物,在使用过程中,可以用注射枪注入(补充)。据说在有些情况下使用,效果不错。尽管目前还不能在所有的泵上使用,但是这种思路十分可贵,有希望成为密封技术的一项突破。 (13)渣浆泵叶轮采用扭曲叶片,可能会因为符合流动状态而减轻磨损,并能提高效率。 采用复合技

50、术的成功实例不胜枚举,要用好用活复合技术,要求有较宽的知识面,并敢于仓新。泵站工程行业中英文术语1.1一般术语 1.1.1提水 water lifting 利用机械或工具扬升、输送水。 1.1.2排灌机械 drainage and irrigation machinery 用于农田排水与灌溉的机械与设备的统称,包括水泵、动力机、传动设备、管与管件等。 1.1.3水泵 pump 将动力机的机械能转换为水能(位能、动能、压能)的水力机械。 1.1.4排灌用泵 pumpfordrainage andirrigation 用于农田排水与灌溉的泵,常用的有离心泵、轴流泵、混流泵、水轮泵、长轴井泵、潜水电

51、泵等。 1.1.5动力机 driver(motive power machine) 驱动水泵的机械,常用的有电动机、柴油机、汽油机、风力机等。 1.1.6抽水机组 pumping unit 水泵、动力机与传动设备的组合体。 1.1.7主机组 main pumping unit 泵站中直接为农田排灌服务的抽水机组,简称主机组。 1.1.8泵站辅助设备 auxiliary equipment of pumping station 泵站中与主机组配套的机电设备的统称,包括充水、起重、通风、采暖、量测、泵房、排水以及技术供水、供油、供气等设备。 1.1.9水泵装置 pump system 水泵及进、出

52、水管(流)道的组合体。 1.1.10抽水装置 pumping system 抽水机组及进、出水管(流)道的组合体。 1.1.11泵站建筑物 structures of pumping station 与泵站主机组配套的建筑物的统称,如泵房和取水、引水、进水、出水建筑物等。 1.1.12泵站 pumping station 由抽水装置、辅助设备及配套建筑物组成的工程设施。 1.1.13泵站枢纽(扬水枢纽) junction station of pumping(pumping hydro-jun-ction) 由泵站与有关控制建筑物组成的整体1.2泵站规划 1.2.1机电排水区 pumping-

53、drainage area 利用抽水设施进行排水的地域。 1.2.2扬水灌区 pumping-irrigation area 利用抽水设施进行灌溉的地域。 1.2.3扬水区划分 zoning of pumping area 机电排水区与扬水灌区的分级、分区控制。 1.2.4最小功率法 least power method 按总装机功率最小确定各级泵站位置高程的方法。 1.2.5容泄区 storage area for drainage-water of water-logging low-land 容纳和宣泄排涝、排渍水量的地域。 1.2.6排水泵站设计流量 designed capacity of drainage pumping station 根据排水标准、排水面积和调蓄能力等确定的泵站流量。 1.2.7灌溉泵站设计流量 designed capacity of irrigation p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论