




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Harbin Institute of Technology,误差理论与数据处理,不确定度合成规则的应用,Harbin Institute of Technology,不确定度合成规则的应用,测量总不确定度的计算 测量方法中的不确定度 提高测量结果精度的途径 测量不确定度计算的现状,Harbin Institute of Technology,不确定度合成规则的应用,测量总不确定度的计算 被测量数值 完整的测量结果报告包括两部分 不确定度 标准不确定度 最终结果的合成的不确定度的形式 扩展不确定度 相对不确定度 不确定度各分量估计方法及数值 对于重要测量应给出 相应的自由度 相关各项间的相关系
2、数,Harbin Institute of Technology,不确定度合成规则的应用,包含因子 对于合成扩展不确定度 应给出 置信系数 置信概率 对于通常测量结果的扩展不确定度,也应给出包含因子的值。 下面给出几个实例,说明测量数据处理和不确定 度的估计与合成计算。,Harbin Institute of Technology,不确定度合成规则的应用,例 为分析转台速率精度,测量时段 内的转角 则可得角速度 ,设测得 , 分析其相对扩展不确定度。 解 由测量方程 可得其误差表达式 式中,转角测量误差 包括两部分:测量仪器光 栅盘刻线误差 ,角度伺服系统的跟踪误差 。,Harbin Inst
3、itute of Technology,不确定度合成规则的应用,于是,误差表达式可写为 设 , , ,得 相应的标准不确定度合成表达式为 式中,,Harbin Institute of Technology,不确定度合成规则的应用,光栅刻线不确定度 光栅刻线不确定度由其刻划工艺决定,为 , 该值的可靠性估计为 ,即 由式 可得 的自由度为,Harbin Institute of Technology,不确定度合成规则的应用,按置信概率 ,自由度 查 分布表 得临界值: 取包含因子 ,则标准不确定度应为,Harbin Institute of Technology,不确定度合成规则的应用,伺服系
4、统跟踪不确定度 伺服系统跟踪相应的扩展不确定度经分析为 估计该值的不确定范围为 ,即 的不确定 度为: 由式 可得, 的自由度为:,Harbin Institute of Technology,不确定度合成规则的应用,按 , ,查 分布表,得 则标准不确定度为 基准源不确定度 用作时段计量的基准相对误差 ,该值可 变动范围可估计为 ,相应的扩展不确定度 为,Harbin Institute of Technology,不确定度合成规则的应用,由式 其自由度为: 按 , ,查 分布表得: 则标准不确定度为,Harbin Institute of Technology,不确定度合成规则的应用,合成
5、标准不确定度 标准不确定度的各分量分别为: 其自由度分别为:,Harbin Institute of Technology,不确定度合成规则的应用,合成得总标准不确定度: 总扩展不确定度 由式 可计算得有效自由度,Harbin Institute of Technology,不确定度合成规则的应用,有效自由度为: 按 , 查 分布表得 ,取 ,则总扩展不确定度为:,Harbin Institute of Technology,不确定度合成规则的应用,其相对扩展不确定度为: 最后给出的结果 相对扩展不确定度 置信概率 包含因子 自由度,Harbin Institute of Technology
6、,不确定度合成规则的应用,例 利用正弦尺测量锥体角度 ,原理图如下图示 已知 , ,锥角公称值 , 若测得数据 ,试求出锥角的测量结果及其 不确定度。,Harbin Institute of Technology,不确定度合成规则的应用,测量原理 用量块垫起正弦尺,使之抬起角度 ,所需 组合量块的名义尺寸应为: 按舍入规则,取 。使用五等量块。组 合如下表:,公称尺寸,偏 差,Harbin Institute of Technology,不确定度合成规则的应用,沿平板移动表架,使测微表分别测量工件上母线两 端 、 两点,设两点距离为 ,两点的读数差为 , 则被测锥角 与 之差 可按该式求得:
7、测 量 原 理 图,Harbin Institute of Technology,不确定度合成规则的应用,测量结果及其修正 若测微表在 、 两点的读数差 ,则: 被测锥角应为: 为修正测量结果,应找出已知的系统误差,主要有 三项: 量块中心长度偏差 所选量块名义尺寸与计算名义尺寸之差 工件安置歪斜造成的误差,Harbin Institute of Technology,不确定度合成规则的应用,量块中心长度偏差 三块量块的偏差分别为 , , 。量块组合尺寸偏差为: 求 的传递系数 ,由正弦关系 两边对 求导:,Harbin Institute of Technology,不确定度合成规则的应用,
8、故传递系数为: 则 折合为锥角误差应为: 所选量块名义尺寸与计算名义尺寸之差 算得量块尺寸 ,按舍入规则取 故系统误差为: 其传递系数为: 则该项局部误差为:,Harbin Institute of Technology,不确定度合成规则的应用,工件安置歪斜造成的误差 如图所示,以侧挡板定位,工件歪斜角为: 实际测量的是 角在 侧挡板上的投影角 分析几何关系可得 锥角实际值; 锥角 在水平面上的投影,Harbin Institute of Technology,不确定度合成规则的应用,又有: 由此可得: 将 数值代入上式计算 值,即:,Harbin Institute of Technolog
9、y,不确定度合成规则的应用,按误差定义,测得值 的误差应为: 式中, 以其公称值代入。 以上三项系统误差之和为: 对结果进行修正:,Harbin Institute of Technology,不确定度合成规则的应用,测量的扩展不确定度 主要几项误差的扩展不确定度列出如下: 量块中心长度检定的扩展不确定度 正弦尺两圆柱中心距离的扩展不确定度 正弦尺工作面与两圆柱下母切平面的平行性误差的扩展不确定度 测微表误差相应的扩展不确定度,Harbin Institute of Technology,不确定度合成规则的应用,量块中心长度检定的扩展不确定度 量块中心长度的检定误差属于不确定的系统误差, 认为
10、它服从正态分布,由量块的检定规程知,五等 量块检定的扩展不确定度为: 三块量块组合尺寸的扩展不确定度为: 传递系数 ,将 折合到测量结果,该项 误差相应的扩展不确定度分量为:,Harbin Institute of Technology,不确定度合成规则的应用,正弦尺两圆柱中心距离的扩展不确定度 该项误差是由加工误差造成的,属于不确定系统误差 认为它服从正态分布。该项扩展不确定度由正弦尺的 检定规程查得: 。 传递系数通过求导得到: 传递系数为: 该项扩展不确定度折合到测量结果,为:,Harbin Institute of Technology,不确定度合成规则的应用,正弦尺工作面与两圆柱下母
11、线切平面的平行性误差的扩展不确定度 该误差由正弦尺的加工误差造成,属于不确定 的系统误差,服从正态分布。由检定规程查得 使用窄型 长的正弦尺的该项扩展不确定 度为:,Harbin Institute of Technology,不确定度合成规则的应用,求传递系数:不能用求导的方法求出,利用几何 关系求出。如下图示: 在 中,令 , ,误差量很小,所以 角度误差可写为: ,由此, 即为 的传 递系数。计算得该项扩展不确定分量为:,Harbin Institute of Technology,不确定度合成规则的应用,测微表误差相应的扩展不确定度 测微表误差包括是指重复性误差和示值误差两部 分。 示
12、值重复性误差属于随机误差,查得该项扩展不 确定度为: ,因为要测量两端各一次 所以相应的扩展不确定度是两次合成的结果: 示值误差属于系统误差,查得: 将二者合成得其综合扩展不确定度为:,Harbin Institute of Technology,不确定度合成规则的应用,由如图所示的几何关系 该项误差传递至最后结 果的相应扩展不确定度 分量为: 综上所述:各项误差都可看作是正态分布的,且互 不相关,给出的扩展不确定度可靠性较高,合成得 最终结果的扩展不确定度为: 最后结果为:,Harbin Institute of Technology,不确定度合成规则的应用,讨论 通过上面的分析计算可以看到
13、,测量中的主要误差成分是系统误差,多次重复测量不能使测量精度有根本性改善,要分别采取不同的措施消除或减小主要的系统误差成分。 正弦尺平行性误差为未知的系统误差,对测量结果的影响最大,为了消除或减小该项误差,可考虑采取以下三条措施: 提高正弦尺的加工精度,减小平行性误差。,Harbin Institute of Technology,不确定度合成规则的应用,采用二次测量的方法。 如右图所示,先用量块 垫起正弦尺的 端测量 锥体一次,垫起正弦尺 端锥体掉转 再测 一次,取两次测量结果 的平均值作最后结果。 增大正弦尺的长度 ,可使传递系数减小,从而减小这一误差的影响。,Harbin Institu
14、te of Technology,不确定度合成规则的应用,量块误差为系统误差,为减小该项误差的影响 可采取以下两点措施: 选用较高等别的量块。 增大正弦尺的长度 ,使其传递系数 减小。 测微表的误差分为两部分,示值误差(系统误差)和示值重复性误差(随机误差)。一般测微表的示值误差都比示值重复性误差大。为提高测微表的使用精度,可采用如下办法: 为减小示值重复性误差的影响,可作多次重复测量。,Harbin Institute of Technology,不确定度合成规则的应用,该项误差的传递系数为 ,减小传递系数可减小测微表误差的影响。因此应使所测两点间距离尽可能的长。 选择适当尺寸的量块,使测微
15、表在锥体两测量端上均指零。此时,只利用测微表做指零标准,其示值误差没有影响。 误差分析的积极意义 给出测量的可靠性,对测量结果作出评定。 指出提高测量精度的措施和途径,对拟定和改进测量方法具有指导作用。,Harbin Institute of Technology,不确定度合成规则的应用,测量方法设计中的不确定度 测量不确定度的微小分量 测量总不确定度的规定 不确定度各项分量的确定 按等作用原则规定不确定度的各分量 对各误差分量进行适当调整 验算总不确定度,Harbin Institute of Technology,不确定度合成规则的应用,测量不确定度的微小分量 可认为某项不确定度分量是微小
16、分量的条件: 设测量方法包含的误差因素为 ,相应 的标准不确定度分别为 ,传递系数分别 为 。将各标准不确定度分别乘以相应的 传递系数折合为总标准不确定度分量: 若各项误差不相关,则总标准不确定度为:,Harbin Institute of Technology,不确定度合成规则的应用,考虑误差分量 ,将相应的标准不确定度分量 舍弃,合成总标准不确定度: 若这一合成结果与没有舍掉 合成的总标准不确 定度接近,即: 则可认为标准不确定度分量 为微小分量,在标 准不确定度合成中影响很小。,Harbin Institute of Technology,不确定度合成规则的应用,通常情况下,可认为某不确
17、定度分量是微小分量的条件: 若某项标准不确定度分量 小于合成的总标准不 确定度 的 ,即: 则可认为在标准不确定度合成中, 的影响是微 小的。,Harbin Institute of Technology,不确定度合成规则的应用,因为: ,即 所以: ,即 因此: 可见,舍弃 后的合成标准不确定度与未舍弃 的合成标准不确定度仅差 ,这说明 的影 响是微小的。,Harbin Institute of Technology,不确定度合成规则的应用,注意事项: 1。 是判定微小误差的界限,但这一界限是 粗略的,而且也不是绝对的。在某些情况下,遵 循界限 。 2。在不确定度合成中,切不可轻易按界限 舍
18、 弃某一分量。在合成不确定度时,所能舍弃的不 确定度分量应以不影响合成不确定度的有效数字 为限。,Harbin Institute of Technology,不确定度合成规则的应用,给出判定界限的意义:经济方面。 例 设合成的总标准不确定度为 ,试分析在 合成 时,按 的限度舍弃某项标准不确 定度分量时的影响。 解 设舍弃 后合成结果为 ,则 即 有 。按 的界限舍 弃微小分量对合成不确定度有影响,是不恰当的,Harbin Institute of Technology,不确定度合成规则的应用,测量总不确定度的规定 测量的总不确定度应根据被测量的精度要求恰当的给以规定。通常,测量的总标准不确
19、定度 按被测量标准不确定度的 来确定。 在选择测量的标准器具时,标准器具的不确定度也以测量的总不确定度的 为限,不应过分 苛求。,Harbin Institute of Technology,不确定度合成规则的应用,例 在检定公称尺寸为 的五等量块中心长度偏差 分析标准量块中心长度误差的影响。 解 为检定五等量块,应以四等量块为标准。设四等 量块的中心长度不确定度为 ,其余全部误差因素 的相应扩展不确定度为 ,则五等量块的检定扩展 不确定度应为:,Harbin Institute of Technology,不确定度合成规则的应用,按量块的检定规程,尺寸小于 的被检量块的 扩展不确定度 不得超
20、过 ,所用四等标准量 块扩展不确定度为 ,则由上式得: 可见,标准量块的误差对测量总误差的影响较小。,Harbin Institute of Technology,不确定度合成规则的应用,不确定度各分量的确定 设测量的各误差间互不相关,测量的总标准不确度 为: 式中 为标准不确定度分量。 若给定测量的总标准不确定度为 ,则应按下式 条件规定各标准不确定度分量:,Harbin Institute of Technology,不确定度合成规则的应用,按等作用原则规定不确定度的各分量 设给定总不确定度 ,则各分量按下式给定: 或 即为规定各不确定分量的等作用原则。,Harbin Institute
21、of Technology,不确定度合成规则的应用,由各不确定度分量的等作用原则可知,各项误差的标准不确定度应为: 也可按扩展不确定度规定各分量,此时: 或,Harbin Institute of Technology,不确定度合成规则的应用,对于 次测量的算术平均值,其随机的标准不确 定度分量为: 则各项随机误差的标准不确定度为: 按扩展不确定度给定这一分量,因为: 则:,Harbin Institute of Technology,不确定度合成规则的应用,对各误差分量进行适当调整 调整原因 1。各误差因素的传递系数不同,若规定各标准不 确定度的分量相等,各误差因素的标准不确定度就 不同,造
22、成了对各误差因素要求不一的不合理状况 2。即使所规定的各误差因素的不确定度相同,对 于不同的误差因素来说,要满足同一要求的难易程 度不同。,Harbin Institute of Technology,不确定度合成规则的应用,调整原则 对某些难以保证精度要求或需付出较高代 价的分量,应适当放宽要求; 对某些易于满足规定要求的且有一定压缩 潜力的分量可适当缩小其不确定度。,Harbin Institute of Technology,不确定度合成规则的应用,验算总不确定度 在调整了各不确定度分量以后,应按不确 定度的合成公式验算总不确定度。 若结果大于给定的不确定度,应重新调整 各不确定度分量;
23、若结果远小于给定的不 确定度,应适当放宽对某些分量的要求。,Harbin Institute of Technology,不确定度合成规则的应用,例 望远镜的放大率 ,已测得物镜主焦距 ,目镜主焦距 ,则可求得放大 率 ,现给定放大率的标准不确定度为 , 试规定 与 的标准不确定度 与 。 解 与 的传递系数为: 则放大率的标准不确定度表达式为:,Harbin Institute of Technology,不确定度合成规则的应用,按等作用原则规定 与 的标准不确定度分量 令各标准不确定度分量相等,则有: 根据标准不确定度合成关系, 与 的标准不确定 度应分别规定为:,Harbin Insti
24、tute of Technology,不确定度合成规则的应用,调整各标准不确定度分量 由上面计算可知,在所规定的标准不确定度中,对 的要求较严,对 的要求较松,因此,应适当 放宽 ,压缩 。取 , 。 验算总标准不确定度 由标准不确定度合成公式,得 验算结果小于给定的标准不确定度,满足要求。,Harbin Institute of Technology,不确定度合成规则的应用,提高测量结果精确度的途径 控制测量误差因素 选择有利的测量方案 满足误差分量的均衡条件(控制最大误差分量) 充分利用测量误差的抵偿性,Harbin Institute of Technology,不确定度合成规则的应用,
25、控制测量误差因素 从根源上消除或减小误差因素的影响 (测量器具、环境条件、测量者) 通过修正或补偿技术消除已知系统误差 选择适当的测量方法避免某些误差因素的影响,Harbin Institute of Technology,不确定度合成规则的应用,选择有利的测量方案 选择测量方案的出发点:测量精度和经济性 目的:在一定的条件下获得较高的测量精度,或者在满足一定测量精度的要求下获得较好的经济效果。 措施:测量方程式的确定、测量参数的转换、对测量误差因素的限定要求。,Harbin Institute of Technology,不确定度合成规则的应用,确定测量方程式的最佳形式 确定测量方程式,要考
26、虑测量的原理方案、测量的仪器设备、测量的条件、现有的能力、测量的难易程度测量的方式,根据不确定度的合成公式分析测量的精度和经济效果,给出最佳的测量方程式。 正确选择测量系统的参数 根据给出的不确定度的合成表达式进行分析,适当选择测量系统参数,可有效减小测量误差的影响。,Harbin Institute of Technology,不确定度合成规则的应用,设测量的总标准不确定度的表达式为: 式中,传递系数 为测量系统某些参数的 函数。 适当地调整参数 ,使传递系数 尽可能小,可 有效的减小合成的总标准不确定度 。,Harbin Institute of Technology,不确定度合成规则的应
27、用,例 用卡尺测量铜丝直径,试给出有利的测量条件。 解 如左图所示,将铜丝紧 密地在一根圆棒上绕 圈 用卡尺测量 圈的长度 , 则铜丝的直径应为: 设测量的扩展不确定度为 ,则铜丝的直径的扩展不 确定度为: 由上式可见,当 足够大时,直径的测量精度可满足 一定要求,这就是测量的最佳条件。,Harbin Institute of Technology,不确定度合成规则的应用,设卡尺的测量扩展不确定度为 ,要使直径 的测量误差不大于 ,则应使: 应使铜丝绕 圈以上才能满足这一要求。 依靠增加圈数能不能无限制的提高直径的测量精 度?为什么? (不能,还有圈间的间隙,铜丝表面灰尘等因素的影响),Har
28、bin Institute of Technology,不确定度合成规则的应用,例 试分析用弓高弦长法测量大直径时的最佳条件。 解 测量方程式已给出为: 测量的误差关系式为: 其扩展不确定度的表达式为: 适当选择测量中的参数 与 ,使传递系数尽可能小。 令:,Harbin Institute of Technology,不确定度合成规则的应用,此时: 即有: 这就是最佳测量条件。 此时, , , 的传递系数为零,即误 差 对测量结果没有影响。 而 的传递系数也达到最小值,为 。,Harbin Institute of Technology,不确定度合成规则的应用,例 单摆的周期公式如下 式中,
29、 为摆长,为重力加速度。现通过测量 与 获得重 力加速度 ,试分析最佳测量条件。 解 由给定的单摆周期公式得: 由 与 的测量误差 与 引起的误差为:,Harbin Institute of Technology,不确定度合成规则的应用,将 的表达式代入上式,则有: 扩展不确定度合成公式可写为: 式中, 是常数,若要减小误差的传递系数,应使 增大。,Harbin Institute of Technology,不确定度合成规则的应用,满足误差分量的均衡条件 测量误差有三项分量,其标准不确定度分别为 ,合成的结果为: 令 减小至 ,测量的总标准不确定度为 令 减小至 ,测量的总标准不确定度为 由
30、上点可见:为了有效的提高测量精度,应从减小最大误差分量着手。适当的控制最大误差分量,可在比较经济的条件下获得较高的精度。,Harbin Institute of Technology,不确定度合成规则的应用,例 用坐标法测量齿轮齿形误差时,影响精度的主要因素 有:分度不确定度(扩展不确定度,以下同) ,齿 轮安装偏心不确定度 ,瞄准齿廊及读数不确定 度 。设压力角 ,基圆半径 试分析测量精度,并作适当改进。 解 现由渐开线方程 给出各误 差的传递关系。 分度不确定度 引起的齿形测量扩展 不确定度为:,Harbin Institute of Technology,不确定度合成规则的应用,由齿轮安装偏心不确定度 引起的齿形测量不确定度为 瞄准不确定度 一比一的传递于齿形测量中,由于是两 次瞄准,所以,相应的齿形测量不确定度分量为: 则齿形测量的扩展不确定度为:,Harbin Institute of Technology,不确定度合成规则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农户货款管理办法
- 农村土鸡管理办法
- 农村物业管理办法
- 农田垦造管理办法
- 冰川管理办法
- 冷库分类管理办法
- 出差管理办法官方
- 出行安全管理办法
- 分包监督管理办法
- 分档晋级管理办法
- DB42T1989-2023城乡公益性安葬设施建设与管理规范
- 生日快乐儿童十岁生日派对感恩活动策划PPT图文相册
- GB/T 3655-2022用爱泼斯坦方圈测量电工钢带(片)磁性能的方法
- GB/T 34281-2017全民健身活动中心分类配置要求
- GB/T 25383-2010风力发电机组风轮叶片
- 《书信的书写》课件
- 矿山地质工作规程手册
- 房间隔缺损、室间隔缺损教学课件
- 中国企业境外投资ESG信息披露指南
- 光伏电站项目法律尽职调查清单模版
- 室外工程施工方案(管网、绿化、铺装、道路、景观、给排水、电气)
评论
0/150
提交评论