2.4三角形的中位线.ppt_第1页
2.4三角形的中位线.ppt_第2页
2.4三角形的中位线.ppt_第3页
2.4三角形的中位线.ppt_第4页
2.4三角形的中位线.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角形的 中位线,小明要测量一个他家后园池塘的宽AB,又没有足够长的尺, 怎么办呢?,搞测量的叔叔看见了,想出一个好办法:在池塘的一侧的平地上选一点C,再分别找出线段AC、BC的中点D、E,量出DE的长为18米,就马上可以的出AB的长了。,为什么可以用这种测法呢?,首先我们看刚才测量的线段DE,它特殊在哪里?,线段两端分别是三角形两边的中点。,连接三角形两边中点的线段叫作 三角形的中位线。,中位线定义:,2猜想.gsp,操作实验1.gsp,几何语言: 如图,ABC中,E、F分别 是AB、AC 的中点, 则 EF是ABC的中位线。,猜想: 三角形的中位线平行于第三边, 并且等于第三边的一半。,想

2、一想:观察图2(2),发现四边形EBCG是什么四边形?AEF与CGF有何关系?,从图形变换的角度来看,CGF可由AEF通过何种变换得到?,中位线定理旋转.gsp,证明:将AEF绕点F旋转180,设点E的像为点G ,可知点A的像是点C,点F的像是点F,且E,F,G在同一直线上。,EFBC,EF BC,旋转不改变图形的形状和大小CG=AE=BE,GF=EF, G =AEFEACG, 即BECG 四边形BCGE是平行四边形。 EG/BC,EG=BC EF=FG, EF= EG = BC,B,A,E,F,G,C,证明:延长EF至G,使GFEF,连接CG,BECG BECG,B,A,E,F,G,C,四边

3、形BCGE是平行四边形,AFECFG(SAS),一题多解,过点C作CGAB,与EF的延长线相交于点G。,过点A作AG/BC,过点F作HG/BA分别交BC、AG于点H、G.,F,G,H,G,F,补短法,截长法,一题多解,注意:这个定理在同一题设下有两个结论,在应用时要加以选择,有时需位置关系,有时需数量关系,有时需兼而有之。,刚才量池塘宽应用的是哪种关系?AB有多宽?,小明要测量一个他家后园池塘的宽AB,又没有足够长的尺, 怎么办呢?,搞测量的叔叔看见了,想出一个好办法:在池塘的一侧的平地上选一点C,再分别找出线段AC、BC的中点D、E,量出DE的长为18米,就马上可以的出AB的长了。,为什么可

4、以用这种测法呢?,变式练习:,(1)四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。,如图,若两对角线AC=BD 时,四边形EFGH是什么四边形?为什么?,如图,若两对角线ACBD 时,四边形EFGH是什么四边形? 为什么?,同学们分组讨论!,(1)如图1,已知ABC中,点D、E、F分别是AB、BC、CA的中点,AB=4cm,BC=3.4cm,CA=3cm,求DEF的周长。,变式题:如图1,点D、E、F分别 是AB、BC、CA的中点,若DEF的 周长为10,求ABC的周长。(教材第57页习题第2题),图1,学以致用,(2)如图2, ABC的边 AB、BC、CA的中点分别是D、E、F,(1)四边形ADEF是平行四边形吗?为什么?(2)四边形ADEF的周长等于AB+AC吗?为什么? (教材第56页练习第2题).,(3)变式练习: 如图3,ABC的边 AB、BC、CA的中点分别是D、E、F,连接DF、AE,求证:AE、DF互相平分。,图3,图2,这节课我们学习了:,2、三角形中位线定理,1、三角形中位线的概念,连接三角形两边中点的线段叫作三角形的中位线.,三角形的中位线平行于第三边,并且等于第三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论