高中数学(人教A版)必修二 3.2.1直线的点斜式方程 课件_第1页
高中数学(人教A版)必修二 3.2.1直线的点斜式方程 课件_第2页
高中数学(人教A版)必修二 3.2.1直线的点斜式方程 课件_第3页
高中数学(人教A版)必修二 3.2.1直线的点斜式方程 课件_第4页
高中数学(人教A版)必修二 3.2.1直线的点斜式方程 课件_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、祝愿大家的人生能想直线一样顺势前进! 若不能,能象正弦曲线一样在曲折中前进! 但决不会象圆一样回到起点!,复习回顾,已知A(0,3),B(-1,0),C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列)。,1、直线的点斜式方程:,已知直线l经过已知点P1(x1,y1),并且它的斜率是k 求直线l的方程。,O,x,y,l,设点P(x,y)是直线l上 不同于P1的任意一点。 根据经过两点的直线斜率 公式,得,由直线上一点和直线的斜率确定的直线方程,叫直线的点斜式方程。,新课:,小结:,直线上任意一点P与这条直线上 一个定点P1所确定的斜率都相等。,当P点与P1重

2、合时,有x=x1,y=y1,此时满足y-y1=k(x -x1),所以直线l上所有点的坐标都满足y-y1=k(x-x1), 而不在直线l上的点,显然不满足(y-y1)/(x-x1)=k即 不满足y-y1=k(x-x1),因此y-y1=k(x-x1)是直线l的方程。,如果直线l过P1且平行于Y轴,此时它的 倾斜角是900,而它的斜率不存在,它的方程不能用点斜 式表示,但这时直线上任一点的横坐标x都等于P1的横坐 标所以方程为x=x1,如直线l过P1且平行于x轴,则它的斜率k=0,由点斜式 知方程为y=y0;,P为直线上的任意一点,它的 位置与方程无关,O,x,y,P1,P,思考: x轴所在直线的方

3、程是什么? y轴所在直线的方程是什么?,y=0,x=0,应用:,例1:一条直线经过点P1(-2,3),倾斜角=450,求这 条直线的方程,并画出图形。,解:这条直线经过点P1(-2,3), 斜率是 k=tan450=1,代入点斜式得,y3 = x + 2, 即xy + 5 = 0,O,x,y,-5,5,P1,例2:一条直线经过点A(0,5),倾斜角为00,求这直线方程,解:这条直线经过点A(0,5) 斜率是k=tan00=0,代入点斜式,得,y - 5 = 0,O,x,y,5,直线的斜截式方程:,已知直线l的斜率是k,与y轴的交点是P(0,b),求 直线方程。,代入点斜式方程,得l的直线方程:

4、y - b =k ( x - 0),即 y = k x + b 。,(2),例3:斜率是5,在y轴上的截距是4的直线方程。,解:由已知得k =5, b= 4,代入斜截式方程,y= 5x + 4 即5 x - y + 4 = 0,4,例5:求过点(1,2)且与两坐标轴组成一等腰直角 三角形的直线方程。,解:直线与坐标轴组成一等腰直角三角形 k=1,直线过点(1,2)代入点斜式方程得,y- 2 = x - 1 或y(),即0或0,例6:已知直线l过A(3,-5)和B(-2,5),求直 线l的方程,解:直线l过点A(3,-5)和B(-2,5),将A(3,-5),k=-2代入点斜式,得,y(5) =2 ( x3 ) ,即 2x + y 1 = 0,巩固: 经过点(- ,2)倾斜角是300的直线的方程是 (A)y = ( x2) (B)y+2= (x ) (C)y2= (x )(D)y2= (x ) 已知直线方程y3= (x4),则这条直线经过的已知 点,倾斜角分别是 (A)(4,3);/ 3 (B)(3,4);/ 6 (C)(4,3);/ 6 (D)(4,3);/ 3 直线方程可表示成点斜式方程的条件是 (A)直线的斜率存在 (B)直线的斜率不存在 (C)直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论