




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020年8月12日,网络挖掘综述,朱廷劭(Zhu, Tingshao),Web Mining,Web mining - data mining techniques to automatically discover and extract information from Web documents/services (Etzioni, 1996). Web mining research integrate research from several research communities (Kosala and Blockeel, July 2000) such as: Databa
2、se (DB) Information retrieval (IR) The sub-areas of machine learning (ML) Natural language processing (NLP),Web Mining : Subtasks,Resource Finding Task of retrieving intended web-documents Information Selection Can identify information within given web pages (Etzioni et.al. 1997):Uses heuristics to
3、distinguish personal home pages from other web pages ShopBot (Etzioni et.al. 1997): Looks for product prices within web pages,Web Mining,Web Structure Mining,Web Content Mining,Web Page Content Mining,Search Result Mining,Web Usage Mining,General Access Pattern Tracking,Customized Usage Tracking,Web
4、 Mining Taxonomy,Search Engine Result Summarization Clustering Search Result (Leouski and Croft, 1996, Zamir and Etzioni, 1997): Categorizes documents using phrases in titles and snippets,Web Mining,Web Structure Mining,Web Content Mining,Web Page Content Mining,Search Result Mining,Web Usage Mining
5、,General Access Pattern Tracking,Customized Usage Tracking,Web Mining Taxonomy,Using Links PageRank (Brin et al., 1998) CLEVER (Chakrabarti et al., 1998) Using Generalization MLDB (1994) Uses a multi-level database representation of the Web. Counters (popularity) and link lists are used for capturin
6、g structure.,Web Mining,Web Structure Mining,Web Content Mining,Web Page Content Mining,Search Result Mining,Web Usage Mining,General Access Pattern Tracking,Customized Usage Tracking,Web Mining Taxonomy,Web Log Mining (Zaane, Xin and Han, 1998) Uses KDD techniques to understand general access patte
7、rns and trends. Can shed light on better structure and grouping of resource providers.,Web Mining,Web Structure Mining,Web Content Mining,Web Page Content Mining,Search Result Mining,Web Usage Mining,General Access Pattern Tracking,Customized Usage Tracking,Web Mining Taxonomy,Adaptive Sites (Perkow
8、itz and Etzioni, 1997) Analyzes access patterns of each user at a time. Web site restructures itself automatically by learning from user access patterns.,Web Content Mining,Discovery of useful information from web contents / data / documents Web data contents: text, image, audio, video, metadata and
9、 hyperlinks. Information Retrieval View ( Structured + Semi-Structured) Assist / Improve information finding Filtering Information to users on user profiles Database View Model Data on the web Integrate them for more sophisticated queries,Web Content Mining,Agent-based Approaches: Intelligent Search
10、 Agents Information Filtering/Categorization Personalized Web Agents Database Approaches: Multilevel Databases Web Query Systems,Intelligent Search Agents,Locating documents and services on the Web: WebCrawler, Alta Vista (): scan millions of Web documents and create index of words (too many irrelev
11、ant, outdated responses) MetaCrawler: mines robot-created indices Retrieve product information from a variety of vendor sites using only general information about the product domain: ShopBot,Intelligent Search Agents (Contd),Rely either on pre-specified domain information about particular types of d
12、ocuments, or on hard coded models of the information sources to retrieve and interpret documents: Harvest FAQ-Finder Information Manifold OCCAM Parasite Learn models of various information sources and translates these into its own concept hierarchy: ILA (Internet Learning Agent),Information Filterin
13、g/Categorization,Using various information retrieval techniques and characteristics of open hypertext Web documents to automatically retrieve, filter, and categorize them. HyPursuit: uses semantic information embedded in link structures and document content to create cluster hierarchies of hypertext
14、 documents, and structure an information space BO (Bookmark Organizer): combines hierarchical clustering techniques and user interaction to organize a collection of Web documents based on conceptual information,Personalized Web Agents,This category of Web agents learn user preferences and discover W
15、eb information sources based on these preferences, and those of other individuals with similar interests (using collaborative filtering) WebWatcher PAINT Syskill&Webert GroupLens Firefly others,Web Structure Mining,To discover the link structure of the hyperlinks at the inter-document level to gener
16、ate structural summary about the Website and Web page. Direction 1: based on the hyperlinks, categorizing the Web pages and generated information. Direction 2: discovering the structure of Web document itself. Direction 3: discovering the nature of the hierarchy or network of hyperlinks in the Websi
17、te of a particular domain.,Web Structure Mining,Finding authoritative Web pages Retrieving pages that are not only relevant, but also of high quality, or authoritative on the topic Hyperlinks can infer the notion of authority The Web consists not only of pages, but also of hyperlinks pointing from o
18、ne page to another These hyperlinks contain an enormous amount of latent human annotation A hyperlink pointing to another Web page, this can be considered as the authors endorsement of the other page,Web Usage Mining,Web usage mining also known as Web log mining mining techniques to discover interes
19、ting usage patterns from the secondary data derived from the interactions of the users while surfing the web,Web Logs,Web servers have the ability to log all requests Web server log formats: Most use the Common Log Format (CLF) New, Extended Log Format allows configuration of log file Generate vast
20、amounts of data,Potential Data Sources,Client Computer,Client-level logs,User Behaviors,Modem,ISP Server,Proxy-level logs,Web Server,Server-level logs,Content Server,Content-level logs,Site Content,The Web Usage Mining Process,Content and Structure Data,Preprocessing,Pattern Discovery,Pattern Analys
21、is,Usage Data,Preprocessed Clickstream Data,Rule, Patterns and Statistics,Interesting Rule, Patterns and Statistics,Problems with Web Logs,Identifying users Clients may have multiple streams Clients may access web from multiple hosts Proxy servers: many clients/one address Proxy servers: one client/
22、many addresses Data not in log POST data (i.e., CGI request) not recorded Cookie data stored elsewhere,Cont,Missing data Pages may be cached Referring page requires client cooperation When does a session end? Use of forward and backward pointers Typically a 30 minute timeout is used Web content may be dynamic May not be able to reconstruct what the user saw Use of spiders and automated agents automatic request we pages,Data Preprocessing,Like most data mining tasks, web log mining requires preproce
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风电工程培训课件下载
- 肾内科饮食护理宣教
- 爱护眼睛健康小班教育指南
- 大班学校安全教育
- 气血淤积健康指导
- 2025年5山东省威海市中考招生考试数学真题试卷(真题+答案)
- 预防网恋主题班会课件
- 预防梅毒的课件模板
- 外科急腹症患者术后护理
- 顾客管理课件
- 车辆转让及新能源充电桩安装与运营服务合同
- 2025年视觉传达设计考试试题及答案解析
- 贷款逾期催收保证合同范本
- 2025至2030中国邻氨基苯甲酸市场发展趋势及未来前景展望报告
- 中心血站培训课件
- 2025至2030中国现金支付行业发展分析及投资风险预警与发展策略报告
- DB 5201∕T 152.2-2025 交通大数据 第2部分:数据资源目录
- 2025-2030中国建筑项目管理软件行业应用状况与需求趋势预测报告
- 中国常识课件
- 5.3.1探究酵母菌的呼吸方式课件高一上学期生物人教版必修1
- 政府采购法律法规及操作实务
评论
0/150
提交评论