LDA+U第一性原理方法.ppt_第1页
LDA+U第一性原理方法.ppt_第2页
LDA+U第一性原理方法.ppt_第3页
LDA+U第一性原理方法.ppt_第4页
LDA+U第一性原理方法.ppt_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Introduction to LDA+U method and applications to transition-metal oxides:Importance of on-site Coulomb interaction U,鄭弘泰 國家理論中心 (清華大學) 28 Aug, 2003, 東華大學,Outline,DFT, LDA (LDA, LSDA, GGA) Insufficiencies of LDA How to improve LDA Self-interaction correction (SIC) LDA+U method Applications of LDA+U o

2、n various transition-metal oxides Conclusions,Density Functional Theory (DFT)Hohenberg-Kohn Theorem, PR136(1964)B864,The ground-state energy of a system of identical spinless fermions is a unique functional of the particle density. This functional attains its minimum value with respect to variation

3、of the particle density subject to the normalization condition when the density has its correct values.,Local density approximation (LDA)Kohn-Sham scheme PR140(1965)A1133,Insufficiencies of LDA,Poor eigenvalues, PRB23, 5048 (1981) Lack of derivative discontinuity at integer N, PRL49, 1691 (1982) Gap

4、s too small or no gap, PRB44, 943 (1991) Spin and orbital moment too small, PRB44, 943 (1991) Especially for transition metal oxides,PRB 23 (1981) 5048,PRL 49 (1982) 1691,PRB 44 (1991) 943,Attempts on improving LDA,Self-interaction correction (SIC) PRB23(1981)5048, PRL65(1990)1148 Hartree-Fock (HF)

5、method, PRB48(1993)5058 GW approximation (GWA), PRB46(1992)13051, PRL74(1995)3221 LDA+Hubbard U (LDA+U) method, PRB44(1991)943, PRB48(1993)16929,Local density approximation (LDA)Kohn-Sham scheme PR140(1965)A1133,Self-interaction correction (SIC) Perdew and Zunger, PRB23(1981)5048,Basic idea of LDA+U

6、 PRB 44 (1991) 943, PRB 48 (1993) 169,Delocalized s and p electrons : LDA Localized d or f electrons : +U using on-site d-d Coulomb interaction (Hubbard-like term) Uijninj instead of averaged Coulomb energyUN(N1)/2,Hubbard U for localized d orbital :,n,n,n+1,n-1,U,e,LDA+U energy functional :,LDA+U p

7、otential :,LDA+U eigenvalue :,For occupied state ni=1,For unccupied state ni=0,p,e,Eexact(H) = 1.0 Ry,ELDA(H) = 0.957 Ry Eexact(H),eLDA (H) = 0.538 Ry Eexact (H),Take Hydrogen for example:,p,e,2Eexact(H) = 2.0 Ry,p,Eexact (H+) = 0.0 Ry,e,p,e,Eexp(H-) = 1.0552 Ry,e,ESIC(H-) = 1.0515 Ry,ELDA(H-) : no

8、bound state,U = E(H+) + E(H-) 2E(H) = 0.9448 Ry,p,e,eLDA (H) = 0.538 Ry,U = 0.9448 Ry,Occupied (H) state: eLDA+U(H) = eLDA (H) U/2 = 1.0104 Ry 1 Ry,Unoccupied (H+) state: eLDA+U(H+) = eLDA (H) U/2 = 0.0656 Ry0 Ry,When to use LDA+U,Systems that LDA gives bad results Narrow band materials : UW Transit

9、ion-metal oxides Localized electron systems Strongly correlated materials Insulators .,How to calculate U and J PRB 39 (1989) 9028,Constrained density functional theory + Supper-cell calculation Calculate the energy surface as a function of local charge fluctuations Mapped onto a self-consistent mea

10、n-field solution of the Hubbard model Extract the Coulomb interaction parameter U from band structure results,Where to find U and J,PRB 44 (1991) 943 : 3d atoms PRB 50 (1994) 16861 : 3d, 4d, 5d atoms PRB 58 (1998) 1201 : 3d atoms PRB 44 (1991) 13319 : Fe(3d) PRB 54 (1996) 4387 : Fe(3d) PRL 80 (1998)

11、 4305 : Cr(3d) PRB 58 (1998) 9752 : Yb(4f),Notes on using LDA+U,The magnitude of U is difficult to calculate accurately, the deviation could be as large as 2eV For the same element, U depends also on the ionicity in different compounds: the higher ionicity, the larger U One thus varies U in the reas

12、onable range to obtain better results One might varies U in a much larger range to see the effect of U (qualitatively) Self-consistent LDA+U (much more difficult),Various LDA+U methods,Hubbard model in mean field approx. (HMF) LDA+U : PRB 44 (1991) 943 (WIEN2K, LMTO) Approximate self-interaction cor

13、rection (SIC) LDA+U : PRB 48 (1993) 16929 (WIEN2K) Around the mean field (AMF) LDA+U : PRB 49 (1994) 14211 (WIEN2K) Rotationally invariant LDA+U : PRB 52 (1995) R5468 (VASP4.6, LMTO) Simplified rotationally invariant LDA+U : PRB 57 (1998) 1505 (VASP4.6, LMTO),Original LDA+U(HMF) : PRB 44 (1991) 943,

14、LDA+U(SIC): PRB 48 (1993) 16929,LDA+U(AMF) : PRB 49 (1994) 14211,Rotationally invariant LDA+U: PRB52(1995)R5468,Slater integral,Simplified rotationally invariant LDA+U : PRB 57 (1998) 1505,Applications of LDA+U on transition-metal oxides,Pyrochlore : Cd2Re2O7 (VASP) Rutile : CrO2 (FP-LMTO) Double pe

15、rovskite : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 (FP-LMTO) Cubic inverse spinel : high-temperature magnetite (Fe3O4, CoFe2O4, NiFe2O4) (FP-LMTO, VASP, WIEN2K) Low-temperature charge-ordering Fe3O4 (VASP, LMTO),Pyrochlore Cd2Re2O7,Lattice type : fcc 88 atoms in cubic unit cell Space group : Fd3m a = 10.219A

16、, x=0.316 Ionic model: Cd+2(4d10), Re+5(5d2), O-2(2p6) U(Cd) = 5.5 eV, U(Re) = 3.0 eV J = 0 eV (no spin moment),Pyrochlore structure,PRB 66 (2002) 12516,O-2p,Cd-4d,Re-5d-t2g,PRB 66 (2002) 12516,Pyrochlore Cd2Re2O7,LDA unoccupied DOS agree well with XAS data from K. D. Tsuei, SRRC Cd-4d band from LDA

17、 is 3 eV higher than photo emission spectrum (PRB66(2002)1251) Cd-4d band from LDA+U agree well with photo emission spectrum (PRB66(2002)1251) Cd-4d orbital is close to localized electron picture, whereas the other orbitals are more or less itinerant,Rutile CrO2,Half-metal, moment = 2B Lattice type

18、: bct 6 atoms in bct unit cell Space group : P42/mnm a = 4.419A, c=2.912A, u=0.303 Ionic model : Cr+4(3d2), O-2(2p6) U = 3.0 eV, J = 0.87 eV,Rutile structure,PRB 56 (1997) 15509,Spin and orbital magnetic moments of CrO2,* D. J. Huang et al, SRRC,Rutile CrO2,LDA+U enhances the gap and the exchange sp

19、litting at the Fermi level LDA+U also gives larger spin and orbital magnetic moment UW, orbital moment quenched, stronger hybridization, stronger crystal field, close to itinerant picture,Double perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6,Half-metal, moment = 4, 3, 2B Lattice type : tet, fcc, fcc 4

20、0 atoms in tet, fcc, fcc unit cell Space group : I4/mmm, Fm3m, Fm3m a = 7.89, 7.832, 7.878A, c/a=1.001, 1, 1 Ionic model : Fe+3(3d5), Cr+3(3d3), Mo+5(4d1), Re+5(5d2), W+5(5d1) U(Fe,Cr) = 4,3 eV, J(Fe,Cr) = 0.89, 0.87 eV,Double perovskite structure,LDA,LDA+U,SFMO,SFRO,SCWO,SFMO,SFRO,SCWO,Occupation n

21、umber of d orbital in Sr2FeReO6,Occupation number of d orbital in Sr2CrWO6,Double perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6,LDA+U has significant effects on DOS, but experimental data is not available Orbital moment of 3d and 4d elements are all quenched because of strong crystal field 5d element

22、s exhibit large unquenched orbital moment because of strong spin-orbit interaction in 5d orbitals,Magnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4,Half-metal, insulator, moment = 4, 3, 2B Lattice type : fcc Space group : Fd3m 56 atoms in fcc unit cell a = 8.394, 8.383, 8.351 A Ionic model : Fe

23、+3(3d5), Fe+2(3d6), Co+2(3d7), Ni+2(3d8) U(Fe+3,Fe+2,Co+2,Ni+2)=4.5, 4.0, 7.8, 8.0eV J(Fe,Co,Ni) = 0.89, 0.92, 0.95eV,Spinel structure,LDA+U, U(Fe)=4.5eV, U(Co)=7.8eV,LDA,CoFe2O4,LDA+U, U(Fe)=4.5eV, U(Ni)=8eV,LDA,NiFe2O4,Magnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4,LDA+U gives better DOS f

24、or Fe3O4 LDA+U gives insulating ground states for CoFe2O4 and NiFe2O4 Spin moment of Fe3O4 from LDA+U agrees better with experimental value On-site U gives large unquenched orbital magnetic moments for Fe(B), Co, and Ni Fe3O4: localizeditinerant electron CoFe2O4, NiFe2O4: localized electron,Low-temperature Fe3O4,Insulator La

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论