高一数学 解三角形应用举例.ppt_第1页
高一数学 解三角形应用举例.ppt_第2页
高一数学 解三角形应用举例.ppt_第3页
高一数学 解三角形应用举例.ppt_第4页
高一数学 解三角形应用举例.ppt_第5页
免费预览已结束,剩余32页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2.1应用举例,一、复习,3.正弦定理的变形:,2.三角形面积公式:,一、复习,4.余弦定理及其推论:,解三角形的四种基本类型:,实际应用问题中有关的名称、术语,1.仰角、俯角、视角。,(1)当视线在水平线上方时,视线与水平线所成角叫仰角。,(2)当视线在水平线下方时,视线与水平线所成角叫俯角。,(3)由一点出发的两条视线所夹的角叫视角。(一般这两条视线过被观察物的两端点),水平线,视线,视线,仰角,俯角,3.水平距离、垂直距离、坡面距离。,水平距离,垂直距离,坡面距离,坡度(坡度比) i: 垂直距离/水平距离,坡角: tan=垂直距离/水平距离,2.方向角、方位角。,(1).方向角:指北

2、或指南方向线与目标方向线所成的小于900的水平角叫方向角。,(2).方位角:指北方向线顺时针旋转到目标方向线所成的角叫方位角。,点A在北偏东600,方位角600.,点B在北偏西300,方位角3300.,点C在南偏西450,方位角2250.,点D在南偏东200,方位角1600.,A,C,B,51o,55m,75o,测量距离,例1、设A、B两点在河的两岸,要测量两点之间的距离。,测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离是55cm,BAC51o, ACB75o,求A、B两点间的距离(精确到0.1m),分析:已知两角一边,可以用正弦定理解三角形,解:根据正弦定理,得,答:A,B两点间

3、的距离为65.7米。,A,B,C,D,例2、A、B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。,分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。,解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=, ACD=, CDB=, BDA=.在ADC和BDC中,应用正弦定理得,计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离,选定两个可到达点C、D;,测量C、D间的距离及ACB、ACD、BDC、ADB的大小;,利用正弦定理求AC和BC;,利用余弦定理

4、求AB.,测量两个不可到达点之间的距离方案:,形成规律,课本P12 测量方案 基线,练习1、一艘船以32.2n mile / hr的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),(1)什么是最大仰角?,(

5、2)例题中涉及一个怎样的三角 形?,在ABC中已知什么,要求什么?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),已知ABC中AB1.95m,AC1.40m, 夹角CAB6620,求BC,解:由余弦定理,得,答:顶杆BC约长1.89m。,实际问题,解应用题的基本思路,小品1.2题组一例1,2,测量高度,测量垂直高度,1、底部可以到达的,测量出角C和BC的长度,解直角三角形即可求出AB的长。,图中给出了怎样的一个

6、几何图形?已知什么, 求什么?,想一想,2、底部不能到达的,解:选择一条水平基线HG,使H,G,B三点在同一条直线上。由在H,G两点用测角仪器测得A的仰角分别是,CD=a,测角仪器的高是h.那么,在 ACD中,根据正弦定理可得,例3. AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,例3 AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高。由解直角三角形的知识,只要能测出一点C到建筑物的顶部A的距离CA,并测出由点C观察A的仰角,就可以计算出建筑物的高

7、。所以应该设法借助解三角形的知识测出CA的长。,CD=BD-BC177-27.3=150(m),答:山的高度约为150米。,解:在ABC中,BCA= 90 +, ABC= 90 -, BAC=-, BAD=.根据正弦定理,,分析:根据已知条件,应该设法计算出AB或AC的长,例5.一辆汽车在一条水平的公路上向正西行驶,到A处 时测得公路南侧远处一山顶D在西偏北15o 的方向上, 行驶5km后到达B处,测得此山顶在西偏北30o的方向上, 仰角15o,求此山的高度CD.,A,D,C,B,30o,15o,15o,例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的

8、方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角8,求此山的高度CD.,解:在ABC中,A=15, C= 25 15=10. 根据正弦定理,,CD=BCtanDBCBCtan81047(m),答:山的高度约为1047米。,练习P15,第1题,A,B,C,D,a,b,第2题,练习P15,A,B,C,D,30o,45o,200m,30o,45o,h,第3题,练习P15,小品1.2题组二例2,例6 一艘海轮从A出发,沿北偏东75的方向航行67.5n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0n mile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到0.1,距离精确到0.01n mile)?,解:在 ABC中,ABC1807532137,根据余弦定理,,P16练习. 3.5m长的木棒斜靠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论