




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、28.1 锐角三角函数 第1课时,1、理解当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实; 2、理解正弦的概念.,学习目标,问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?,分析:这个问题可以归结为,在RtABC中,C90,A30,BC35m,求AB.,新课引入,在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?,A,B,C,50m,35m,B ,C ,根据“直角三角形中,30度角所对的边等于斜边的
2、一半”,即 ,得AB=2BC=100,即在直角三角形中,当一个锐角等于45 时,不管这个直角三角形的大小如何,这 个角的对边与斜边的比都等于,如图,任意画一个RtABC,使C90,A45,计算A的对边与斜边的比 ,你能得出什么结论?,A,B,C,例题讲解,综上可知,在一个RtABC中,C90,当A30 时,A的对边与斜边的比都等于 ,是一个固定值;当 A45时,A的对边与斜边的比都等于 ,也是一 个固定值.,一般地,当A 取其它一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?,小结,任意画RtABC和RtABC,使得CC 90,AA,那么 与 有什么关 系你能解释一下吗?,A,B,C,
3、A,B,C,两个三角形相似,对应边成比例,故比值相等.,这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值,如图,在RtABC中,C90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA即,例如,当A30时,,当A45时,,c,a,b,对边,斜边,概念解析,【例1】如图,在RtABC,B=90,AC=200,sinA=0.6; 求BC的长.,【解析】在RtABC中,应用,1.判断对错:,1)如图 sinA= ( ) sinB= ( ) sinA=0.6m ( ) SinB=0.8 ( ),sinA是一个比值,无单位.,2)如图,sinA
4、= ( ),练习,2.在RtABC中,锐角A的对边和斜边同时扩大100倍,sinA的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定,C,1.(温州中考)如图,在ABC中,C=90, AB=13,BC=5,则sinA的值是( ) A. B. C. D.,【解析】选A由正弦的定义可得,巩固,2.在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sinOAB等于_. 3.在RtABC中,C=90,AD是BC边上的中线,AC=2,BC=4,则sinDAC=_. 4.在RtABC中, 则sinA=_.,A,C,B,求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值.,5.如图, C=90CDAB.sinB可以由哪两条线段之比?,若C=5,CD=3,求sinB的值.,【解析】B=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年会计职称考试《初级会计实务》内部控制与审计基础理论与模拟试题及答案
- 2024年2月26日国家公务员面试题(知识产权局参公)(题后含答案及解析)
- 承揽加工合同集合(31篇)
- 军工产品测试题及答案
- 驾校保过协议书范本
- 电梯机房钻孔协议书范本
- 镇政府租地协议书范本
- 2025年公安考试真题及答案
- 知道智慧树翻译入门满分测试答案
- 2025届云南省玉溪师范附中高三上学期开学考-政治试题(含答案)
- 2024年中级注册安全工程师《安全生产法律法规》真题及答案
- “赤峰小米”谷子品种要求(DB15-T 1734-2019)
- 派出所签订治安调解协议书范文
- 人文视野中的生态学学习通超星期末考试答案章节答案2024年
- 牧场物语-矿石镇的伙伴们-完全攻略
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理体系 审核与认证机构要求》中文版(机翻)
- GB/T 17374-2024食用植物油销售包装
- 玻璃钢储罐吊装方案
- 医院培训课件:《麻醉药品、精神药品管理培训》
- 河南省南阳市卧龙区南阳市第一完全学校、南阳市第九完全学校 2024-2025学年九年级上学期9月联考数学试题(无答案)
- DB12-T 1153-2022 城市轨道交通运营设备设施大修和更新改造技术规范
评论
0/150
提交评论