数学人教版九年级上册24.1.3弧、弦、圆心角的关系.1.3弧、弦、圆心角的关系.ppt_第1页
数学人教版九年级上册24.1.3弧、弦、圆心角的关系.1.3弧、弦、圆心角的关系.ppt_第2页
数学人教版九年级上册24.1.3弧、弦、圆心角的关系.1.3弧、弦、圆心角的关系.ppt_第3页
数学人教版九年级上册24.1.3弧、弦、圆心角的关系.1.3弧、弦、圆心角的关系.ppt_第4页
数学人教版九年级上册24.1.3弧、弦、圆心角的关系.1.3弧、弦、圆心角的关系.ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、西和县城关九年制学校,陈玲玲,24.1.3弧、弦、圆心角的关系,(1)圆是轴对称图形,它的对称轴是过圆心的直线。,一、,圆的对称性如何?(导航17页请你思考1),(2)圆是中心对称图形,它的对称中心是圆心。,二、想一想,圆绕着它的圆心旋转多少度就能与原图形重合?,(3)结论:圆绕圆心旋转任意一个角度都能与原 图形重合,这是圆的旋转不变性。,什么叫圆心角?(导航17页请你思考2),圆心角 顶点在圆心的角叫圆心角。(如AOB). 弦心距 过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。(如线段OD).,根据旋转的性质,将圆心角AOB绕圆心O旋转到AOB的位置时, AOBAOB,射线 OA与OA重合

2、,OB与OB重合而同圆的半径相等,OA=OA,OB=OB,点 A与 A重合,B与B重合,O,A,B,O,A,B,A,B,A,B,三、,弧AB与弧AB重合,AB与AB重合,如图,将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么?(导航17页请你思考3),弧、弦与圆心角的关系定理(等对等定理),四、说一说,五、议一议,定理“在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦也相等”中,可否 把条件“在同圆或等圆中”去掉?为什么?,不能去掉. 反例:如图,虽然AOB=AOB, 但ABAB,弧AB弧AB,定理“在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦也相等”中,可否

3、 把条件“在同圆或等圆中”去掉?为什么?,如图,AB、CD是O的两条弦 (1)如果AB=CD,那么_,_ (2)如果 ,那么_,_ (3)如果AOB=COD,那么_,_ (4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,四、练习,OEOF 证明: OEAB OF CD ABCD AECF OAOC RTAOERT COF OEOF,推论,在同圆或等圆中,如果两个圆心角,两条弧,两条弦中,有一组量相等,那么它们所对应的其余各组量都分别相等.,如由条件:,AB=AB, OD=OD,AOB=AOB,在这里可以不说“在同圆或等圆中”吗?,证明:, AB=AC,又ACB=60,, AB=BC=CA., AOBBOCAOC.,A,B,C,O,五、例题,例1 如图,在O中, ,ACB=60,求证AOB=BOC=AOC,(1)如图,AB是O 的直径, COD=35,求AOE 的度数,解:,六、练习,(2)在圆O中,圆心角AOB=90,点O到弦AB的距离为5,则圆O的直径为( )(导航17页请你思考4),(3) 如图,已知AB、CD为O的两条弦,弧AD=弧BC, 求证AB=CD,(4)如图,已知OA、OB是O的半径,点C为AB的中点,M、N分别为OA、OB的中点,求证:MC=NC,1、等对等定理 2、等对等定理的推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论