




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、空间向量及其加减与数乘运算,复习回顾:平面向量,1、定义:,既有大小又有方向的量。,2、平面向量的加法、减法与数乘运算,向量加法的三角形法则,3、平面向量的加法、减法与数乘运算律,推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。,F1,F2,F1=10N,F2=15N,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法
2、交换律,加法结合律,数乘分配律,C,A,B,D,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,O,A,B,C,空间向量的数乘,空间向量的加减法,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法
3、:三角形法则,加法:三角形法则或 平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,加法:三角形法则或 平行四边形法则,减法:三角形法则,数乘:ka,k为正数,负数,零,加法结合律,成立吗?,加法结合律:,O,A,B,C,O,A,B,C,推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图),A,B,C,
4、D,平行六面体:平行四边形ABCD平移向量 到A1B1C1D1的轨迹所形成的几何体.,记做ABCD-A1B1C1D1,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图),G,M,始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量,F1,F2,F1=10N,F2=15N,F3=15N,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的
5、x的值。,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,A,B,M,C,G,D,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,A,B,M,C,G,D,(2)原式,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,A,B,C,D,D,C,B,A,练习2,在立方体AC1中,点E是面AC 的中心,求下列各式中的x,y.,E,A,B,C,D,D,C,B,A,练习2,E,在立方体AC1中,点E是面AC 的中心,求下列各式中的x,y.,A,B,C,D,D,C,B,A,练习2,E,在立方体AC1中,点E是面AC 的中心,求下列各式中的x,y.,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,小结,类比思想 数形结合思想,数乘:ka,k为正数,负数,零,作业,思考题:考虑空间三个向量共面的充要条件.,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高端餐饮企业劳务派遣及员工培训合同
- 2025版健身房及游泳馆专业保洁服务合同
- 2025年高空桥梁施工设备搬运合同范本
- 二零二五年餐饮业员工职业发展与技能培训合同
- 2025版标准化第三方担保借款合同标准化模板
- 2025版材料采购合同(含产品优化)规范范本
- 二零二五年度企业协同办公SaaS定制化销售合同
- 2025年财务人员担保责任书范本
- 二零二五年度XX工业园区污水厂综合治理技术服务合同
- 二零二五年度房产车辆转让与子女婚后共同财产协议
- 农业水利考试试题及答案
- 2025中国核工业集团公司招聘(300人)笔试参考题库附带答案详解
- 肺结核患者护理课件
- 商业房屋租赁合同协议书
- 弘扬教育家精神做新时代大学教师
- 生态环境执法案件培训
- 孕期健康方式课件
- 暑假的一次冒险经历记事作文4篇范文
- 煤炭工业矿井建设岩土工程勘察规范
- 2024慢性、重大疾病、肢体伤残疾病中医康复方案
- 微生物检验潜在风险试题及答案讨论
评论
0/150
提交评论