




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.1空间几何体的结构,在现实生活中,我们的周围存在着各种各样的 物体,它们具有不同的几何形状。,空间几何体,如果我们只考虑物体的形状和大小,而不考 虑其它因素,那么由这些物体抽象出来的空 间图形就叫做空间几何体。,请观察下图中的物体,这些图片中的物体具有什么样的几何 结构特征?你能对它们进行分类吗?,上图中的物体大体可分为两大类. 其中(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形; (1),(3),(4),(6),(8),(10),(11),(12) 具有相同的特点:组成它们的面不全是平面图形.,想一
2、想?,我们应该给上述两大类几何 体取个什么名字才好呢?,定义:,1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。,2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。,下面我们来探究柱,锥,台,球的结构特征,1.棱柱的结构特征,请仔细观察下列几何体,说说它们的共同特点.,定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的公共边 都互相平行,由这些面围成的几何体 叫做棱柱。,棱柱的有关概念,棱柱中,两个互相平行的面 叫棱柱
3、的底面(简称底), 其余各面叫棱柱的侧面, 相邻侧面的公共边叫侧棱, 侧面与底面的公共顶点叫 棱柱的顶点。,(1)底面互相平行,(2)侧面都是平行四边形,(3)侧棱平行且相等,棱柱的分类:棱柱的底面可以是三角形、四边形、五边形、 我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、,三棱柱,四棱柱,五棱柱,1. 侧棱不垂直于底的棱柱叫做斜棱柱 2.侧棱垂直于底的棱柱叫做直棱柱 3. 底面是正多边形的直棱柱叫做正棱柱,棱柱的表示,用底面各顶点的字母表示棱柱, 如图所示的六棱柱表示为: “棱柱ABCDEFABCDEF”,理解棱柱,探究1:,一个长方体,能作为 棱柱底面的有几对?,答:长方体有三对平行平
4、面;这三对都可以作为棱柱的底面,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?,答:不一定是 如图所示的几何体, 不是棱柱,探究2:,长方体按如图截去一角后所得的两部分还是棱柱吗?,探究3:,A,B,C,D,A,B,C,D,长方体按如图截去一角后所得的两部分还是棱柱吗?,探究3:,A,B,C,D,A,B,C,D,E,F,G,H,F,E,H,G,答:都是棱柱,探究4:,观察右边的棱柱,共有多少对平行平面?能作为棱柱的底面的有几对?,答:四对平行平面;只有一对可以作为棱柱的底面,棱柱的任何两个平行平面都可以作为棱柱的底面吗?,答:不是,练习1.在棱柱中.( ),A . 只有两个面平行,
5、B . 所有的棱都相等,C . 所有的面都是平行四边形,D . 两底面平行,并且各侧棱也平行,D,2.下图中不可能围成正方体的是( ),B,2.棱锥的结构特征,请仔细观察下列几何体,说说它们的共同特点.,定义:有一个面是多边形,其余各面都是 有一个公共顶点的三角形,由这些面 所围成的几何体叫做棱锥。,S,A,B,C,D,棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱。,棱锥的有关概念,棱锥的表示,用表示顶点和底面各顶点的字母表示,如图所示的棱锥表示为:“棱锥SABCD”,棱锥的分类:,按底面多边形的
6、边数,可以分为三棱锥、四棱锥、五棱锥、,用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体?,想一想:,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.,3.棱台的结构特征,棱台的有关概念:,棱台的分类: 由三棱锥、四棱锥、五棱锥截得的棱台,分别叫做三棱台,四棱台,五棱台,棱台的表示方法:“棱台ABCDABCD”,棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点。,练习:下列几何体是不是棱台,为什么?,(1),(2),想一想,怎样给多面体分类呢?,答:可以按面数分类,多面体有几个面就称为几面体。如:三棱锥是四面体,四棱柱是六面体.,练习:见P8页A组第1
7、题的(1),(2),(3)小题.,思考:棱柱、棱锥和棱台都是多面体,当底面发生变化时,它们能否互相转化?,A,A,定义:以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。,(1)圆柱的轴旋转轴. (2)圆柱的底面垂直于轴的边旋转而成的圆面。 (3)圆柱的侧面平行于轴的边旋转而成的曲面。 (4)圆柱侧面的母线无论旋转到什么位置,不垂直于轴的边。,B,O,B,O,4.圆柱的结构特征,圆柱的表示方法:用表示它的轴的字母表示,如:“圆柱OO”,S,A,B,O,定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。,5.圆锥的结构特征,圆锥
8、的表示方法:用表示它的轴的字母表示,如:“圆锥SO”,定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.,6.圆台的结构特征,想一想:圆台能否用旋转的方法得到?若能,请指出用什么图形?怎样旋转?,思考:圆柱、圆锥和圆台都是旋转体,当底面发生变化时,它们能否互相转化?,O,半径,球心,定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.,7.球的结构特征,球的表示方法:用表示球心的字母表示,如:“球O”,练习:见P8页A组第1题的(4)小题,第2题.,几何体的分类,柱体,锥体,台体,球,多面体,旋转体,知识小结,简单几何体的结构特征,柱体,锥体,台体,球,棱柱,圆
9、柱,棱锥,圆锥,棱台,圆台,练习:,1、下列命题是真命题的是( ),A 以直角三角形的一直角边所在的直线为轴旋转所得的几何体为圆锥; B 以直角梯形的一腰所在的直线为轴旋转所得的旋转体为圆柱; C 圆柱、圆锥、棱锥的底面都是圆; D 有一个面为多边形,其他各面都是三角形的几何体是棱锥。,A,2、过球面上的两点作球的大圆,可以作( )个。,1或无数多,简单组合体的结构特征,日常生活中我们常用到的日用品,比如:消毒液、暖瓶、洗洁精等的主要几何结构特征是什么?,简单组合体,由柱、锥、台、球组成了一些简单的组合体认识它们的结构特征要注意整体与部分的关系,圆柱,圆台,圆柱,走在街上会看到一些物体,它们的
10、主要几何结构特征是什么?,简单组合体,一些螺母、带盖螺母又是有什么主要的几何结构特征呢?,简单组合体,下图是著名的中央电视塔和天坛,你能说说它们的主要几何结构特征吗?,你能从旋转体的概念说说它们是由什么图形旋转而成的吗?,简单组合体,你能想象这条曲线绕轴旋转而成的几何图形吗?,这顶可爱的草帽又是由什么样的曲线旋转而成的呢?这个轮胎呢?,旋转体,数学在生活中无处不在,培养在生活中不断的用数学的眼光看问题,会逐渐激发学数学的兴趣,增强数学地分析问题、解决问题的能力,生活与数学,观察下图所示的几何体,说一说它们各由哪些简单几何体组合而成?,由简单几何体组合而成的几何体叫简单组合体。,简单组合体的结构
11、特征,简单组合体构成的两种基本形式:,A、由简单几何体拼接而成,B、由简单几何体截去或挖 去一部分而成,练一练:1将一个直角梯形绕其较短的底所在的直线旋转一周得到一个几何体,关于该几何体的以下描绘中,正确的是( ),A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体,D,2、下列关于简单几何体的说法中: (1)斜棱柱的侧面中不可能有矩形; (2)有两个面互相平行,其余各面都是平行四边形的多面体是棱柱; (3)侧面是等腰三角形的棱锥是正棱锥; (4)圆台也可看成是圆锥被平行于底面的平面所截得截面与底面之间的部分。 其中正确的是_,(4
12、),3、下列关于多面体的说法中: (1)底面是矩形的直棱柱是长方体; (2)底面是正方形的棱锥是正四棱锥; (3)两底面都是正方形的棱台是正棱台; (4)正四棱柱就是正方体; 其中正确的是_,(1),4、以下关于简单旋转体的说法中: (1)在圆柱的上、下底面圆周上各取一点的连线就是 圆柱的母线; (2)圆台的轴截面不可能是直角梯形; (3)圆锥的轴截面可能是直角三角形; (4)过圆锥任意两条母线所作的截面中,面积最大的是轴截面; 其中正确的是_,(2)(3),5、下列图中,不是正方体的表面展开图的是( ),A,B,C,D,C,6、下图不是棱柱的展开图的是( ),A,B,C,D,C,7、正方体的六个面分别涂有红,蓝,黄,绿,黑,白六种颜色,根据下图所示,绿色面的相对面是_色,绿,红,黄,黑,黄,蓝,蓝色,8、有一个正棱锥所有的棱长都相等,则这个正棱锥不可能是( ) A,正三棱锥 B,正四棱锥 C,正五棱锥 D,正六棱锥,D,9、轴截面是正三角形的圆锥侧面展开图的圆心角的弧度数为_,10、一个长,宽,高分别为5cm,4cm,3cm的长方体木块,有一只蚂蚁经木快表面从顶点A爬行到C,最短的路程是多少?,A,C,11、正三棱锥A-BCD的底面边长为2a,侧面的顶角为300,E、F分别是AC、AD上的动点,求截面三角形BEF周长的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网金融平台用户信任度提升的社交媒体营销策略报告
- 信息制作发布管理办法
- 企业楼宇运营管理办法
- 乡镇医疗基金管理办法
- 临时项目补助管理办法
- 口才班家长会课件
- 交通救助基金管理办法
- 临时占用耕地管理办法
- 临近营业施工管理办法
- 企业退税登记管理办法
- 八上数学冀教课后习题答案
- 2022年石嘴山市矿业(集团)有限责任公司招聘考试真题
- 哪些农产品免税(免税农产品包括哪些)
- 融资合作协议模板(2篇)
- 母乳喂养自我效能量表(BSES) (1)附有答案
- (品管圈)良肢位摆放演示教学课件
- 保姆级别CDH安装运维手册
- 园林绿化及广场施工方案
- 可下载打印的公司章程
- 129平米全包装修报价明细表
- --水库除险加固工程下闸蓄水验收建设管理工作报告
评论
0/150
提交评论