




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、概率的加法公式教学设计教材:人教版高一数学第三册第三章第一节1、教学目标:(1)知识与技能目标:通过探究式教学,使学生正确理解“互斥事件”,“彼此互斥”和“对立事件”的概念,理解并掌握当A,B互斥时“事件AUB”的含义,了解两个互斥事件的概率加法公式,并会利用两个对立事件的概率和为1的关系,简化一些概率的运算,同时,会应用所学知识解决一些简单的实际问题。(2)过程与方法目标:在本节教学中,通过日常生活中的大量实例,鼓励学生动手试验,引导学生学会如何观察、推理、归纳、类比、引申、反思和评价,注重培养学生的数学交流表达的能力,知识间纵横迁移的视角转换能力,提高直觉思维能力。(3)情感态度与价值观目
2、标:增强学生合作学习交流的机会,感受与他人合作的重要性,同时养成手、口、眼、耳、脑五官并用的良好习惯。2、教学重点、难点:本节的教学重点是互斥事件和对立事件的概念以及互斥事件的加法公式,教学难点是互斥事件与对立事件的区别和联系。3、教学过程:新授课之前的准备工作:(1)将全班学生分成若干组,每组8人,原则是自愿组合,老师适当调整,使每个小组尽可能具备讨论问题的氛围基础。(2)精选出9个合适的题目制成思考题单,课前发到各个小组,各小组就自己感兴趣的问题分析思考,以奠定上课时各组之间研究问题的基础。(3)做好相应的多媒体演示课件,根据教学情况之需适时演示。师:1个盒内放有10个大小相同的乒乓球,其
3、中5个红球,3个绿球,2个黄球,若从中任取一个球,得到红球记为“事件A”,从中任取一个球,得到绿球记为“事件B”,从中任取一个球,得到黄球记为“事件C”,则事件A、B、C之间存在什么关系?(学生暂时还不能解决这个问题。)师:请同学们首先思考这样一个问题:如果从盒中摸出一个球是红球,则说明事件A怎样?生:事件A发生。师:很好,那么如果从盒中摸出一个球是绿球,即事件B发生,则说明事件A又怎样?生:事件A没有发生。师:通过对以上两个问题的探究,你发现事件A和事件B具有怎样的关系?(让学生思考)生甲:事件A和事件B不能同时发生。师:事件A和事件B就叫互斥事件,请同学们给互斥事件下个定义。生乙:在一次试
4、验中事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。师:很好,那么事件B与事件C是怎样的关系?事件A与事件C又是怎样的关系?生:两个都是互斥事件。师:如果事件A、B、C其中任何两个都是互斥事件(两两互斥),就说A、B、C彼此互斥,那么四个及四个以上的事件是否也能存在这种关系呢?若能请你把它推广到n个。生丙:能,就以上题为例,把盒中的球的颜色增加到若干种即可,有几种颜色就能有几个互斥事件。师:很好,我们再来思考另一个问题,请同学们联想集合的知识,思考能否用集合的知识来解释互斥事件的概念?生丁:从集合角度看两个互斥事件是指由两个事件所含基本事件组成的集合不相交。师:若n个事
5、件彼此互斥呢?生戊:n个事件彼此互斥是指n个事件所含的基本事件组成的集合彼此都不相交。师:请同学们看屏幕,用维恩图图(2)、图(3)来深刻理解互斥事件。师:从集合角度看,若图(4)中的全集U中仅有两个集合,两集合是什么关系?其对应的事件A、B又有什么特殊关系呢?生:集合A、B不相交,集合A、B的并集是全集,事件A、B互斥。师:对,例如在上面问题中,若把“如果从盒中摸出1个球,得到红球记为“事件A”;得到的不是红球(即绿球或黄球)记为“事件B”,事件A与B是否能同时发生?生:不能。师:事件A与B是互斥事件吗?生:是师:事件A与B必有一个发生吗?生:必有一个发生。师:这时事件A与B互为对立事件,请
6、同学们给对立事件下个定义。(学生通过的小组讨论与概括,自然得到结论与定义,让学生表述定义。)生戊:集合A、B互为补集,从事件的角度看,若事件A与B互斥,且A与B中必有一个发生,则称事件A与B是对立事件。生甲:不能同时发生且必有一个发生的两个事件叫做互为对立事件。师:两个同学回答得都很好,甲回答得更简炼,请同学们思考互斥事件与对立事件存在怎样的联系?生:对立事件一定互斥事件,互斥事件不一定是对立事件。做练习:若从一幅去掉大小王的扑克牌中,任取一张,判断下列每对事件中哪些是互斥事件,若是请判断各事件是否为对立事件。A、“抽出红桃”与“抽出黑桃A”;B、“抽出牌的点数是3的倍数”与“抽出牌的点数为2
7、的倍数”;C、“抽出牌的点数为3的倍数”与“抽出牌的点数为5的倍数”;D、“抽出牌的点数小于6”与“抽出牌的点数大于4”;E、“抽出是红桃”与“抽出不是红桃”。(学生思考)学生甲:A、C、E为互斥事件,其中E为对立事件,B、D不是互斥事件。师:通过以上问题的解决,你能否根据你们手中的扑克牌,以小组为单位提出一个有关互斥事件或对立事件的问题吗?请试试看。(通过学生独立思考与讨论,由每小组各提出一个问题大家来讨论评判)甲组学生代表:从一副去掉大小王的扑克牌中(52张)任取2张。“抽出的至少一张牌为红桃”和“抽出的两张牌没有红桃”。生:既是互斥事件也是对立事件。师:下面我们回归到最初的问题情景中,请
8、同学们思考以下问题。1个盒内放有10个大小相同的乒乓球,其中5个红球,3个绿球,2个黄球,若从中任取一个球,求(1)取到红球的概率;(2)取到绿球的概率?生甲:取到红球概率1/2;取到绿球概率3/10;师:很好,若把“从中摸出一个球,得到红球或绿球记作事件AUB,则怎样的事件表示该事件发生?怎样求该事件的概率?它与事件A与B的概率存在怎样的关系?”生乙:从盒中摸出一个球是红球或绿球时,“表示事件AUB发生”,事件AUB的概率等于事件A与事件B的概率之和。师:哪位同学能说明P(AUB)=P(A)+P(B)成立的理由 ?生丙:假定A、B是互斥事件,在n次试验中,事件A出现的频数是n1,事件B出现的
9、频数是n2,则事件AUB出现的频数正好是n1+n2,所以事件AUB的频率为(n1+n2)/n=n1/n+n2/n。而n1/n是事件A出现的频率,n2/n是事件B出现的频率,因此由概率的统计定义知P(AUB)=P(A)+P(B)。(学生回答,老师总结、板书。)师:例1、抛掷一颗骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现2点”,已知P(A)=1/2,P(B)=1/6,求“出现奇数点或2点”的概率。生甲:事件C:“出现奇数点或2点”的概率是事件A“出现奇数点”的概率与事件B“出现2点”的概率之和。即P(C)=P(A)+P(B)=1/2+1/6=2/3。(学生回答,教师板书)师:例2、
10、在数学考试中,小明的成绩在90分以上的概率是0.18,在8089分的概率是0.51,在7079分的概率是0.15,在6069分的概率是0.09,分别计算小明在数学考试中取得80分以上成绩的概率和小明考试及格的概率。生:解:分别记小明的考试成绩在90分以上,在8089分分别为事件B、C,这两个事件彼此互斥,因此小明的考试成绩在80分以上的概率是P(BUC)=P(B)+P(C)=0.18+0.51=0.69。(学生回答,老师板书)师:请同学们仔细观察例2,计算小明考试及格的概率。(学生思考)生:接着第一个问题,再设小明考试成绩在7079分,6069分为事件D、E,所以小明考试及格的概率,即成绩在6
11、0分以上的概率为P(BUCUDUE)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93。师:若事件A1、A2An两两互斥(彼此互斥),那么事件“A1UA2UAn”发生的概率如何表示?生:P(A1UA2UUAn)=P(A1)+P(A2)+ P(An)师:这就是互斥事件的概率加法公式。若A与B是对立事件,根据对立事件的意义,你能得AUB的概率吗?生:P(AUB)=P(A)+P(B)=1师:为什么?生:AUB是必然事件。师:很好,例2中的问题改为求小明考试不及格的概率,设考试不及格为“事件A”,及格为事件“B”。(让学生观察,计算,希望学生通过观察发现对立事件
12、概率的计算公式。)生:小明考试不及格的概率P(A)=1-P(B)=0.07师:哪位同学总结一下,本题给我们提出了哪些解题方法与数学思想?生甲:所求事件概率转化为彼此互斥事件的概率的和。生乙:若求一个事件的概率,可转化为求其对立事件的概率,体现“正难则反”的转化思想。师:哪位同学能归纳出求解方法和步骤,以及应当注意的问题?(师生共同讨论)生丙:解题步骤可归纳为4步:(1)引用数学符号表示问题中的有关事件;(2)判断各事件的互斥性;(3)应用概率的加法公式进行计算;(4)写出答案。如果A、B两个事件不互斥,就不能运用互斥事件的概率加法公式。若A、B为互斥事件,才能运用概率的加法公式。练习:在同一时
13、期内,一条河流某处的年最高水平在各个范围内的概率如下:年最高水位低于10m1012m1214m1416m不低于16m概率0.10.280.380.160.08计算在同一时期内,河流这一处的年最高水位在下列范围内的概率。(1)1016m;(2)低于12m;(3)不低于14m;生:(1)0.92 (2)0.38 (3)0.24师:让我们回顾一下这节课(1)从本节课的学习中你有何收获?(2)如何得出有关概念、规律和公式?生甲:生乙:(学生先总结,老师补充得到)转化思想,特殊到一般的推理方法。师:我们这节课从具体实例出发,通过观察,探索,讨论得出了互斥事件的概念和对立事件的概念,大胆猜测了互斥事件的概
14、率求和公式,并给出证明,而且用这些公式解决一些实际问题,整个过程采用了由特殊到一般的推理方法,这也是我们探索自然规律,认识发现自然规律,应用自然规律常用的方法,希望同学们以后在学习中努力多探索多发现,想信在未来的世界领奖舞台上,会出现在座的各位,谢谢。作业:课本P109,练习A 1题2题课本P110,练习B 2题教学设计说明一、教学内容的特点及处理概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的办法,同时为统计学的发展提供了理论基础,本节课内容具有重要的地位,体现数学来源于生活服务于生活的本质。对于本节课教材中的概念和公式也都是从生活的实例中探究、归纳,猜想、证明得出的。二、教学目标的确定数学教学中应该以知识为依托,以思想方法为核心,以提高学生的能力素质为目的,根据本节课教材的特点和新课标对本节课的教学要求从知识与技能,过程与方法,情感态
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全驾驶案例心得体会
- 煤矿个人安全责任承诺书
- 生产部的绩效考核方案
- 2025年中国水罐消防车行业发展趋势预测及投资战略研究报告
- 燃气事故专项应急预案
- 中国SIP封装行业市场竞争格局及投资前景展望报告
- 2025年中国3D人脸识别器行业发展趋势及投资前景预测报告
- 2021-2026年中国制糖行业发展监测及投资战略规划研究报告
- 牛的饲养管理技术课件
- 江干区升旗活动方案
- 广东深圳红岭中学物理自主招生试卷
- 世界卫生组织生存质量测定简表(WHOQOL-BREF)
- 产品质量证明书
- GB/T 28733-2012固体生物质燃料全水分测定方法
- GB/T 14294-1993组合式空调机组
- GB/T 13912-2002金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- GB/T 11062-2014天然气发热量、密度、相对密度和沃泊指数的计算方法
- 一级建造师继续教育考试题(重点)
- 组合导航与融合导航解析课件
- 数与代数课件
- 工会审计实务课件
评论
0/150
提交评论