


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3.2 运用公式法(二)教案知识与技能目标:1使学生会用完全平方公式分解因式。2使学生学习多步骤,多方法的分解因式。过程与方法目标:1在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力。情感态度与价值观目标:1通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力教学重点让学生掌握多步骤、多方法分解因式方法教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备教学过程.创设问题情境,引入新课因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因
2、式分解的两种方法:提取公因式法、运用平方差公式法现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(ab)(ab)a2b2,而且还学习了完全平方公式(ab)2a22abb2。本节课,我们就要学习用完全平方公式分解因式.讲授新课1推导用完全平方公式分解因式的公式以及公式的特点由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?将完全平方公式倒写:a22abb2(ab)2;a22abb2(ab)2便得到用完全平方公式分解因式的公式什么样的多项式才可以用这个公式分解因式呢?互相交流,找出这个多项式的特点左边的特点有:(1)多项式是三项式;(2
3、)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍右边的特点:这两数或两式和(差)的平方用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方形如a22abb2或a22abb2的式子称为完全平方式由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法练一练:下列各式是不是完全平方式?(1)a24a4;(2)x24x4y2;(3)4a22abb2;(4)a2abb2;(5)x26x9;(6)a2a0.252例题讲解例1把下列完全平方式分解因式
4、:(1)x214x49;(2)(mn)26(mn)9分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式公式中的a,b可以是单项式,也可以是多项式例2把下列各式分解因式:(1)3ax26axy3ay2;(2)x24y24xy分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式如果三项中有两项能写成两数或式的平方,但符号不是“”号时,可以先提取“”号,然后再用完全平方公式分解因式.课堂练习a随堂练习b补充练习把下列各式分解因式:(1)4a24abb2;(2)a2b28abc16c2;(3)(xy)26(xy)9;(4)4(2ab)212(2ab)9;(5)n2;(6)x2yx4。.课时小结这节课我们学习了用完全平方公式分解因式它与平方差公式不同之处是:(1)要求多项式有三项(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式.课后作业写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式见作业
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新疆焉耆回族自治县急诊医学(副高)考试题含答案
- 戒烟随访管理办法
- 数据联动管理办法
- 律师见证管理办法
- 打包流程管理办法
- 按处方管理办法及
- 2024年四川省喜德县急诊医学(副高)考试题含答案
- 松原供热管理办法
- 房山大厦管理办法
- 收费运营管理办法
- 投资合作协议及投资细则说明
- 2025广西公需科目考试答案(3套涵盖95-试题)一区两地一园一通道建设人工智能时代的机遇与挑战
- 闺蜜合同协议书模板模板
- 2025年金华市警示教育基地管理中心选调考试笔试试题
- 全国集体荒地管理办法
- 2025年中国医疗建筑工程行业市场行情动态分析及发展前景趋势预测报告
- 教师招聘教育学试题及答案
- 2025年贵州省中考化学试卷真题(含答案解析)
- 山东济南属国有企业招聘笔试题库2025
- 企业IT桌面运维培训
- 2025年职业道德与社会责任考试试卷及答案
评论
0/150
提交评论