高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修_第1页
高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修_第2页
高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修_第3页
高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修_第4页
高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、31.1方程的根与函数的零点读教材填要点1函数的零点对于函数yf(x),把使f(x)0的实数x叫做函数yf(x)的零点2方程、函数、函数图象之间的关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点3函数零点的存在性定理如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数yf(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)0,这个c也是方程f(x)0的根小问题大思维1函数的“零点”是一个点吗?提示:不是,函数的“零点”是一个数,实际上是函数yf(x)的图象与x轴交点的横坐标2若函数f(x)ax2的零点是1,则

2、a为何值?提示:f(1)a20,a2.3若函数yf(x)在(a,b)内有零点,则f(a)f(b)0.如图所示求函数的零点例1求函数f(x)x37x6的零点自主解答令f(x)0,即x37x60,即(x3x)(6x6)0,x(x1)(x1)6(x1)(x1)(x2x6)(x1)(x2)(x3)0解得x11,x22,x33,函数f(x)x37x6的零点是1,2,3.求函数yf(x)的零点通常有两种办法:其一是令f(x)0,根据解方程f(x)0的根求得函数的零点;其二是画出函数yf(x)的图象,图象与x轴的交点的横坐标即为函数的零点.本题由于画函数图象比较困难,因此,只用了第一种方法.1求下列函数的零

3、点(1)yx22x;(2)ylnx2.解:(1)令yx22x0,则x0或x2,yx22x的零点为0,2.(2)令ylnx20,则lnx2lne2.xe2.函数ylnx2的零点为e2.判断函数的零点、方程的根所在的区间例2函数f(x)exx2的零点所在的一个区间是()A(2,1)B(1,0)C(0,1) D(1,2)自主解答因为函数f(x)的图象是连续不断的一条曲线,又f(2)e240,f(1)e130,f(0)10,所以f(0)f(1)0.令f(x)lgxx,显然f(x)在定义域内为增函数,又f(0.1)0.90,故f(x)在区间(0.1,1)内有零点答案:B判断函数零点个数例3求函数f(x)

4、2xlg(x1)2的零点个数自主解答法一:f(0)10210,f(x)在(0,2)上必定存在零点,又显然f(x)2xlg(x1)2在(0,)上为增函数(图略),故f(x)有且只有一个零点法二:在同一坐标系下作出h(x)22x和g(x)lg(x1)的草图由图象知g(x)lg(x1)的图象和h(x)22x的图象有且只有一个交点,即f(x)2xlg(x1)2有且只有一个零点(1)若函数f(x)在a,b上单调,且f(a)f(b)0,f(2)f(3)0或k0即a.答案:(,)5若函数f(x),则g(x)f(4x)x的零点是_解析:f(x),f(4x).则g(x)x,令g(x)0.有x0,解得x.答案:6

5、试判断方程x32x在区间1,2内是否有实数根?解:因为函数f(x)x32x的图象在区间1,2上是连续曲线,并且f(1)1210,所以f(1)f(2)0,所以函数f(x)x32x在区间1,2内至少有一个零点,即方程x32x在区间1,2内至少有一个实数根一、选择题1若yf(x)在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是()A若f(a)f(b)0,不存在实数c(a,b),使得f(c)0B若f(a)f(b)0,存在且只存在一个实数c(a,b),使得f(c)0C若f(a)f(b)0,不存在实数c(a,b),使得f(c)0D若f(a)f(b)0,有可能存在实数c(a,b),使得f(c)0

6、解析:由零点存在性定理可知选项A不正确;对于选项B,可通过反例“f(x)x(x1)(x1)在区间2,2上满足f(2)f(2)0,但其存在三个零点:1,0,1”推翻;选项C可通过反例“f(x)(x1)(x1)在区间2,2上满足f(2)f(2)0,但其存在两个零点:1,1”推翻答案:D2(2012北京高考)函数f(x)xx的零点个数为()A0B1C2D3解析:因为yx在x0,)上单调递增,y()x在xR上单调递减,所以f(x)x()x在x0,)上单调递增,又f(0)10,所以f(x)x()x在定义域内有唯一零点答案:B3已知f(x)是定义域为R的奇函数,且在(0,)内的零点有1 003个,则f(x

7、)的零点的个数为()A1 003 B1 004C2 006 D2 007解析:f(x)为奇函数,且在(0,)内有1 003个零点,在(,0)上也有1 003个零点,又f(0)0,共有2 00612 007个答案:D4方程x3x10在1,1.5内实数解有()A3个 B2个C至少一个 D0个解析:令f(x)x3x1,则f(1)10.答案:C二、填空题5根据表格中的数据,可以判定方程exx20的一个根所在的区间为_.x10123ex0.3712.727.3920.09x212345解析:令f(x)exx2,由图表知f(1)0.3710.630,f(0)1210,f(1)2.7230.280,f(2)

8、7.3943.390,f(3)20.09515.090,由于f(1)f(2)0,所以一个根所在的区间为(1,2)答案:(1,2)6对于方程x3x22x10,有下列判断:在(2,1)内有实数根;在(1,0)内有实数根;在(1,2)内有实数根;在(,)内没有实数根其中正确的有_(填序号)解析:设f(x)x3x22x1,则f(2)10,f(0)10,f(1)10,则f(x)在(2,1),(1,0)(1,2)内均有零点,即正确答案:7函数f(x)lnxx2的零点个数是_解析:取g(x)lnxh(x)x2则f(x)的零点也就是g(x)与h(x)的交点如下图:答案:28若函数f(x)axxa(a0,且a1)有两个零点,则实数a的取值范围是_解析:函数f(x)的零点的个数就是函数yax与函数yxa交点的个数,由函数的图象可知a1时两函数图象有两个交点,0a1时两函数图象有唯一交点,故a1.答案:(1,)三、解答题9讨论函数f(x)(ax1)(x2)(aR)的零点解:当a0时,函数为yx2,则其零点为x2.当a时,则由(x1)(x2)0,解得x1,22,则其零点为x2.当a0且a时,则由(ax1)(x2)0,解得x或x2,综上所述其零点为x或x2.10已知函数f(x)loga(1x)loga(x3)(0a1)(1)求函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论