




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、19.7 直角三角形全等的判定,1,做一做:如图,具有下列条件的RtABC和Rt 是否全等:,三角形全等的判定定理有哪些?,复习引入,2,C,N,M,B,动动手 做一做,A,4:连结AB;,ABC即为所要 画的三角形,1:画MCN=90;,2:在射线CM上截取CA=4cm;,3:以A为圆心,5cm为半径画弧,交射线CN于B;,3,你发现了什么?,5cm,5cm,4cm,4cm,RtABC RtABC,4,简写:“斜边、直角边定理”或“HL”,C=C=90 A B=AB A C= AC( 或BC= BC),RtABCRt ABC(H L),直角三角形全等的判定方法,几何语言表示:,斜边和一条直角
2、边对应相等的两个直角三角形全等.,5,斜边、直角边公理,有斜边和一条直角边对应相等的两个直角三角形全等.,简写成“斜边、直角边”,或“HL”,前提,6,判断直角三角形全等条件,三边对应相等 SSS 一锐角和它的邻边对应相等 ASA 一锐角和它的对边对应相等 AAS 两直角边对应相等 SAS 斜边和一条直角边对应相等 HL,直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法,还有直角三角形特有的判定方法“HL”.,想一想,你能够用几种方法说明两个直角三角形全等?,我们应根据具体问题的实际情况选择判断两个直角三角形全等的方法.,7,(1) _,A=D ( ASA ) (2) AC=DF,
3、_ (SAS) (3) AB=DE,BC=EF ( ) (4) AC=DF, _ (HL) (5) A=D, BC=EF ( ) (6) _,AC=DF ( AAS ),B,C,A,E,F,D,比一比,把下列说明RtABCRtDEF的条件或根据补充完整.,AC=DF,BC=EF,HL,AB=DE,AAS,B=E,8,例1,已知:如图,在ABC和ABD中,ACBC, ADBD, 垂足分别为C,D,AD=BC,求证: ABCBAD.,9,1. 如图C= D=90,要证明ACB BDA ,至少再补充几个条件,应补充什么条件?把它们分别写出来。,练习,10,2.如图 在ABC中,已知BDAC,CE A
4、B,BD=CE。 说明EBC DCB的理由。,11,1、判断下列命题的真假,并说明理由:,两个锐角对应相等的两个直角三角形全等;,斜边及一个锐角对应相等的两个直角三角形全等;,两直角边对应相等的两个直角三角形全等;,一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.,练一练:,12,(2)若A=D,BC=EF,则ABC与DEF (填“全等”或“不全等”)根据 (用简写法),(3)若AB=DE,BC=EF,则ABC与DEF (填“全等”或“不全等”)根据 (用简写法),(4)若AB=DE,AC=DF则ABC与DEF (填“全等”或“不全等”)根据 (用简写法),2、如图,ABD与DE
5、F都是直角,(1)若A=D,AB=DE,则ABC与DEF (填“全等”或“不全等”)根据 (用简写法),全等,全等,全等,全等,ASA,AAS,SAS,HL,13,3、如图,AC=AD,C=D=Rt ,你能说明ABC与 ABD相等吗?,解:BC=BD,理由如下:, RtACBRtADB (HL).,BC=BD (全等三角形对应边相等).,在RtACB和RtADB中,14,4、如图,B=E=Rt,AB=AE,1=2,则3=4 ,请说明理由。,15,5、如图,ABBD于点B,CDBD于点D,P是BD上一点,且AP=PC,APPC,则ABPPDC,请说明理由。,6、如图,ABD=ACD=90,1=2
6、,则AD平分BAC,请说明理由。,16,7、已知:如图,D是ABC的BC边上的中点,DEAC,DFAB,垂足分别为E,F,且DE=DF. 求证: ABC是等腰三角形.,解: DE AB,DF AC(已知) BED= CFD=RT (垂直意义) DE=DF(已知) BD=CD(中点意义) RT BDE RT CDF(HL) B= C(全等三角形对应角相等) AB=AC(在一个三角形中,等角对等边),17,8、如图,已知CE AB,DF AB,AC=BD,AF=BE,则CE=DF。请说明理由。,ACBD吗?为什么?,18,例1、如图,已知P是AOB内部一点,PDOA, PEOB,D,E分别是垂足,
7、且PD=PE,则点P在AOB的平分线上。请说明理由。,19,2、再过点M作OA的垂线,1、如图:在已知AOB的两边OA,OB上 分别取点M,N,使OM=ON;,3、过点N作OB的垂线,两垂线交于点P,4、那么射线OP就是AOB的平分线.,P,你能用一个三角板作任意角的角平分线吗?,角平分线性质:角的内部,到角两边距离相等的点,在这个角的平分线上。,20,例2 、如图,在ABC与ABC中, CD, CD分别是高,并且ACAC,CDCD,ACBACB 求证:ABCABC,21,1、如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你
8、的理由。,应用练习:,22,2、已知ABC ,请找出一点P,使它到三边的距离 都相等(只要求作出图形,并保留作图痕迹).,三角形的角平分线的交点到三边的距离相等。,P,23,3、如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角ABC和DFE大小有什么关系?,24,解:(1)在R tABC和RtDEF中, RtABCRtDEF (HL),(2) RtABCRtDEF ABC=DEF(全等三角形对应角相等),又DEF+DFE=90 (直角三角形的两个锐角互余),ABC+DFE=90,25,如图,已知ACB=BDA=900 , 要使ABCBDA, 还需要增加一个什么条件?把它们分别写出来.,增加AC=BD;,增加BC=AD;,增加ABC=BAD ;,增加CAB=DBA ;,26,回味无穷,直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智慧交通系统采购合同分析
- 2025班组工人安全操作规程制定与执行协议
- 二零二五版市政工程安装劳务合同范本
- 二零二五年度建筑用保温材料批量供应合同
- 2025版餐饮厨师就业保障与职业规划协议
- 二零二五年度金属材料租赁及加工合同
- 二零二五版「鸿诚担保招聘」人才招聘行业标杆与最佳实践合同
- 2025版变更抚养权协议书(父母监护权调整模板)
- 2025版XX金融衍生品交易合同范本
- 2025搬家公司搬家服务及保险理赔流程合同
- 高一英语新教材全四册单词表汉译英默写(2019新人教版)
- 2024年菏泽郓城县结合事业单位公开招聘征集高校全日制本科及以上学历入伍10人(高频重点提升专题训练)共500题附带答案详解
- 氮气储罐毕业设计
- 武术专业个人简历模板范文
- 煤矿一岗双责制度
- 选煤厂安全规程
- 装配式结构吊装施工计算书
- 中考语文专题复习:传统文化常识100题-专项练习题(含答案)
- 《交替传译1》课程教学大纲
- 梁平旧乱账清理设计方案
- 丝虫病药物研发研究
评论
0/150
提交评论