高考数学一轮复习第一章集合与常用逻辑用语1.2命题的四种形式、充要条件课件.ppt_第1页
高考数学一轮复习第一章集合与常用逻辑用语1.2命题的四种形式、充要条件课件.ppt_第2页
高考数学一轮复习第一章集合与常用逻辑用语1.2命题的四种形式、充要条件课件.ppt_第3页
高考数学一轮复习第一章集合与常用逻辑用语1.2命题的四种形式、充要条件课件.ppt_第4页
高考数学一轮复习第一章集合与常用逻辑用语1.2命题的四种形式、充要条件课件.ppt_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2命题的四种形式、充要条件,高考数学,1.四种命题及其关系 (1)四种命题,知识清单,(2)四种命题间的关系 (3)四种命题的真假关系 a.两个命题互为逆否命题,它们有相同的真假性; b.两个命题互为逆命题或互为否命题,它们的真假性没有关系.,2.充分条件与必要条件 (1)如果pq,则p是q的充分条件,q是p的必要条件. (2)如果pq,qp,则p是q的充要条件. (3)从集合角度理解 若p以集合A的形式出现,q以集合B的形式出现,即A=x|p(x),B=x|q(x),则 a.若AB,则p是q的充分条件; b.若AB,则p是q的必要条件; c.若A=B,则p是q的充要条件.,四种命题的关系

2、及真假的判断 1.命题真假的判断:对于命题真假的判断,首先要分清命题的条件与结论,再结合所涉及的知识才能正确地判断命题的真假. 2.掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题的真假不易判断时,可以判断其逆否命题的真假. 3.“否命题”与“命题的否定”是两个不同的概念.如果原命题是“若p,则q”,那么这个命题的否定是“若p,则q”,只否定结论;而原命题的否命题是“若p,则q”,既否定命题的条件,又否定命题的结论.,方法技巧,例1(1)命题“a,bR,若a2+b2=0,则a=b=0”的逆否命题是. (2)下列命题是假命题的是(填序号). 命题“若x1,则x2-3x+20”的逆否命题是

3、“若x2-3x+2=0,则x=1”; 若02”是“-10”的充分不必要条件.,解析(1)a=b=0的否定为a0或b0;a2+b2=0的否定为a2+b20,故原命题的逆否命题为“a,bR,若a0或b0,则a2+b20”. (2)命题,根据命题的四种形式,可知命题“若p,则q”的逆否命题是“若q,则p”,故该命题正确;命题,因为02”是“-10” 的充分不必要条件,该命题正确.故填.,答案(1)“a,bR,若a0或b0,则a2+b20”(2),充分条件与必要条件的判断 1.利用定义判断:定条件:确定命题中的条件和结论;找推式:是AB的形式,还是BA的形式;下结论:根据定义下结论. 2.利用集合判断

4、:,3.利用等价转化法判断:AB与BA,BA与AB,AB与BA是等价关系.一般地,对于条件或结论是不等关系(否定式)的命题,运用等价法. 例2(1)(2016江苏南京、盐城一模,7)设函数f(x)=cos(2x+),则“f(x)为奇函数”是“=”的条件.(选填“充分不必要”“必 要不充分”“充要”“既不充分也不必要”) (2)(2016四川理改编,7,5分)设p:实数x,y满足(x-1)2+(y-1)22,q:实数x,y满足则p是q的条件(填“充分不必要”“必要不充分” “充要”“既不充分也不必要”).,解析(1)当=时,f(x)=-sin 2x为奇函数,故必要性成立;而当=+2 时,f(x)

5、=-sin 2x也为奇函数,所以充分性不成立. (2)如图,作出p,q表示的区域,其中M及其内部为p表示的区域,ABC及其内部(阴影部分)为q表示的区域,故p是q的必要不充分条件.,答案(1)必要不充分(2)必要不充分,根据充要条件求参数的取值范围 解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解. 例3已知p:x2-4x-320;q:x-(1-m)x-(1+m)0(m0).若“非p”是“非q”成立的必要但不充分条件.求m的取值范围.,解析p:-4x8,从而p为真时x的取值范围是集合P=-4,8. 同理可得,q为真时x的取值范围是集合Q=1-m,1+m(m0). 因为“非p”是“非q”成立的必要但不充分条件,所以“若非q,则非p”是真命题,即“若p,则q”为真,“若q,则p”为假,故PQ, 从而或解得m7. 故m的取值范围是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论