




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1章 计数原理章末分层突破自我校对分类加法计数原理分步乘法计数原理排列排列数公式组合数公式组合数二项展开式的通项对称性增减性 两个计数原理的应用分类加法计数原理和分步乘法计数原理是本部分内容的基础,对应用题的考查,经常要对问题进行分类或者分步进而分析求解(1)“分类”表现为其中任何一类均可独立完成所给事情“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件(2)分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什
2、么方法不影响后一步采取什么方法. 王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读(1)若他从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?【精彩点拨】解决两个原理的应用问题,首先应明确所需完成的事情是什么,再分析每一种做法使这件事是否完成,从而区分加法原理和乘法原理【规范解答】(1)完成的事情是带一本书,无论带外语书,还是数学书、物理书,事情都已完成,从而确定为应用分类加法计数原理,结果为54
3、312(种)(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步乘法计数原理,结果为54360(种)(3)选1本外语书和选1本数学书应用分步乘法计数原理,有5420种选法;同样,选外语书、物理书各1本,有5315种选法;选数学书、物理书各1本,有4312种选法即有三类情况,应用分类加法计数原理,结果为20151247(种)应用两个计数原理解决应用问题时主要考虑三方面的问题:(1)要做什么事;(2)如何去做这件事;(3)怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.再练一题1如图11为电路图,从A到B共有_条不同的线路可通
4、电图11【解析】先分三类第一类,经过支路有3种方法;第二类,经过支路有1种方法;第三类,经过支路有224(种)方法,所以总的线路条数N3148.【答案】8排列、组合的应用排列、组合应用题是高考的重点内容,常与实际问题结合命题,要认真审题,明确问题本质,利用排列、组合的知识解决(1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?(2)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序
5、?若已定好节目单,后来情况有变,需加上诗朗诵和快板2个栏目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?【精彩点拨】按照“特殊元素先排法”分步进行,先特殊后一般【规范解答】(1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:若甲乙都不参加,则有派遣方案A种;若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A种方法,所以共有3A种方法;若乙参加而甲不参加同理也有3A种;若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有A种,共有7A种方法所以共有不同的派遣方法总数为A3A3A7A4 088种(2)第一步,先将4个舞蹈节目捆绑起来,看
6、成1个节目,与6个演唱节目一起排,有A5 040种方法;第二步,再松绑,给4个节目排序,有A24种方法根据分步乘法计数原理,一共有5 04024120 960种第一步,将6个演唱节目排成一列(如下图中的“”),一共有A720种方法第二步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“”的位置),这样相当于7个“”选4个来排,一共有A7654840种根据分步乘法计数原理,一共有720840604 800种若所有节目没有顺序要求,全部排列,则有A种排法,但原来的节目已定好顺序,需要消除,所以节目演出的方式有A132种排法解排列、组合应用题的解题策略1特殊元素优先安排的策略2合理分类和准确分步
7、的策略3排列、组合混合问题先选后排的策略4正难则反、等价转化的策略5相邻问题捆绑处理的策略6不相邻问题插空处理的策略7定序问题除序处理的策略8分排问题直排处理的策略9“小集团”排列问题中先整体后局部的策略10构造模型的策略简单记成:合理分类,准确分步;特殊优先,一般在后;先取后排,间接排除;集团捆绑,间隔插空;抽象问题,构造模型;均分除序,定序除序再练一题2(1)一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是()A40B74C84 D200(2)(2016山西质检)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的
8、中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A60种 B48种C30种 D24种【解析】(1)分三类:第一类,前5个题目的3个,后4个题目的3个;第二类,前5个题目的4个,后4个题目的2个;第三类,前5个题目的5个,后4个题目的1个由分类加法计数原理得CCCCCC74.(2)由题意知,不同的座次有AA48种,故选B.【答案】(1)B(2)B二项式定理问题的处理方法和技巧对于二项式定理的考查常出现两类问题,一类是直接运用通项公式来求特定项另一类,需要运用转化思想化归为二项式定理来处理问题(1)(2014湖北高考)若二项式7的展开式中
9、的系数是84,则实数a()A2 B.C1 D.(2)(2016沈阳高二检测)已知(1xx2)n(nN*)的展开式中没有常数项,且2n8,则n_.(3)设(3x1)6a6x6a5x5a4x4a3x3a2x2a1xa0,则a6a4a2a0的值为_【精彩点拨】(1)、(2)利用二项式定理的通项求待定项;(3)通过赋值法求系数和【规范解答】(1)二项式7的展开式的通项公式为Tr1C(2x)7rrC27rarx72r,令72r3,得r5.故展开式中的系数是C22a584,解得a1.(2)n展开式的通项是Tr1CxnrrCxn4r,r0,1,2,n,由于(1xx2)n的展开式中没有常数项,所以Cxn4r,
10、xCxn4rCxn4r1和x2Cxn4rCxn4r2都不是常数,则n4r0,n4r10,n4r20,又因为2n8,所以n2,3,4,6,7,8,故取n5.(3)令x1,得a6a5a4a3a2a1a02664.令x1,得a6a5a4a3a2a1a0(4)64 096.两式相加,得2(a6a4a2a0)4 160,所以a6a4a2a02 080.【答案】(1)C(2)5(3)2 0801解决与二项展开式的项有关的问题时,通常利用通项公式2解决二项展开式项的系数(或和)问题常用赋值法再练一题3(1)(2014浙江高考)在(1x)6(1y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)
11、f(2,1)f(1,2)f(0,3)()A45B60 C120D210(2)设aZ,且0a13,若512 016a能被13整除,则a() 【导学号:】A0 B1C11 D12【解析】(1)因为f(m,n)CC,所以f(3,0)f(2,1)f(1,2)f(0,3)CCCCCCCC120.(2)512 016a(1341)2 016a,被13整除余1a,结合选项可得a12时,512 016a能被13整除【答案】(1)C(2)D排列、组合中的分组与分配问题n个不同元素按照条件分配给k个不同的对象称为分配问题,分定向分配与不定向分配两种问题;将n个不同元素按照某种条件分成k组,称为分组问题,分组问题有
12、不平均分组、平均分组、部分平均分组三种情况分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使2组元素个数相同,但因所属对象不同,仍然是可区分的对于后者必须先分组再排列按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本【精彩点拨】这是一个分配问题,解题的
13、关键是搞清事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏【规范解答】(1)无序不均匀分组问题先选1本有C种选法,再从余下的5本中选2本有C种选法,最后余下3本全选有C种选法故共有CCC60(种)(2)有序不均匀分组问题由于甲、乙、丙是不同的三人,在第(1)问基础上,还应考虑再分配,共有CCCA360(种)(3)无序均匀分组问题先分三步,则应是CCC种方法,但是这里出现了重复不妨记6本书为A、B、C、D、E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则CCC种分法中还有(AB,EF,CD),(AB,CD,EF),(CD,AB,
14、EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共A种情况,而这A种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有15(种)(4)有序均匀分组问题在第(3)问基础上再分配给3个人,共有分配方式ACCC90(种)(5)无序部分均匀分组问题共有15(种)(6)有序部分均匀分组问题在第(5)问基础上再分配给3个人,共有分配方式A90(种)(7)直接分配问题甲选1本有C种方法,乙从余下5本中选1本有C种方法,余下4本留给丙有C种方法共有CCC30(种)均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分
15、组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.再练一题4有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行如果取出的4张卡片所标数字之和等于10,则不同的排法共有多少种?【解】取出的4张卡片所标数字之和等于10,共有3种情况:1 144,2 233,1 234.所取卡片是1 144的共有A种排法所取卡片是2 233的共有A种排法所取卡片是1 234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有排法ACACACAA1
16、6A种所以共有18A432种.1(2015全国卷)(x2xy)5的展开式中,x5y2的系数为()A10B20C30D60【解析】法一:(x2xy)5(x2x)y5,含y2的项为T3C(x2x)3y2.其中(x2x)3中含x5的项为Cx4xCx5.所以x5y2的系数为CC30.故选C.法二:(x2xy)5为5个(x2xy)之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为CCC30.故选C.【答案】C2(2013全国卷)设m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b.若13a7b,则m()A5 B6 C7 D8【解析】(xy)2m展开式中二项式系数的最大值为C,aC.同理,bC.13a7b,13C7C.137.m6.【答案】B3(2014安徽高考)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有()A24对 B30对C48对 D60对【解析】如图,在正方体ABCDA1B1C1D1中,与面对角线AC成60角的面对角线有B1C,BC1,A1D,AD1,AB1,A1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 研究生教育改革的策略及实施路径
- 新质生产力下新能源产业与低空经济的融合发展
- 拓宽财产性收入渠道实施方案
- 数字经济与传统实体经济的融合路径探析
- 数智赋能企业业财融合体系构建与优化
- 培育化工行业应用型人才的策略及实施路径
- 八上第一单元知识梳理-2023-2024学年八年级语文上册知识考点梳理与能力训练 课件
- 山东潍坊恒德实验学校教师招聘笔试真题2024
- 2024年内蒙古体育局招聘运动员真题
- 乐清市文化旅游投资集团有限公司招聘笔试真题2024
- 家族成员关系辈分排列树状图含女眷
- 围堰施工监理实施细则
- 老年痴呆护理
- 新生血管性青光眼课件
- 车间精益改善总结报告课件(PPT 19页)
- 中小学教育惩戒规则(试行)全文解读ppt课件
- YY∕T 1797-2021 内窥镜手术器械 腔镜切割吻合器及组件
- 《冬病夏治工作指南》
- 布鲁克纳操作手册
- 印度尼西亚煤炭购销合同
- 肠内肠外营养制剂及特点
评论
0/150
提交评论