兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设a,b为实数,若复数,则ab=( )A2B1C1D22 记,那么ABCD3 已知实数,则点落在区域 内的概率为( )A. B.C. D. 【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.4 设函数,则使得的自变量的取值范围为( )A BC D5 计算log25log53log32的值为( )A1B2C4D86 已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)7 已知函数,函数,其中

2、bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD8 分别是的中线,若,且与的夹角为,则=( )(A) ( B ) (C) (D) 9 函数y=ax+1(a0且a1)图象恒过定点( )A(0,1)B(2,1)C(2,0)D(0,2)10已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 11定义运算:例如,则函数的值域为( )A B C D12如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD二、填空题13直线

3、l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_。14向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为15设函数f(x)=则函数y=f(x)与y=的交点个数是16(x)6的展开式的常数项是(应用数字作答)17一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是18设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所

4、有真命题的代号)三、解答题19已知f(x)是定义在1,1上的奇函数,f(1)=1,且若a、b1,1,a+b0,恒有0,(1)证明:函数f(x)在1,1上是增函数;(2)解不等式;(3)若对x1,1及a1,1,不等式f(x)m22am+1恒成立,求实数m的取值范围20中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2

5、个元件,试分析这样操作能否提高通讯器械的有效率21本小题满分10分选修:坐标系与参数方程选讲在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为求圆的圆心到直线的距离;设圆与直线交于点,若点的坐标为,求22(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.23如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点()证明:AG平面ABCD;()若直线BF与平面ACE所成角的正弦值为,求AG的长24已知函数

6、f(x)=(log2x2)(log4x)(1)当x2,4时,求该函数的值域;(2)若f(x)mlog2x对于x4,16恒成立,求m的取值范围兰溪市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:,因此ab=1故选:C2 【答案】B【解析】【解析1】,所以【解析2】,3 【答案】B【解析】4 【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分

7、段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键.5 【答案】A【解析】解:log25log53log32=1故选:A【点评】本题考查对数的运算法则的应用,考查计算能力6 【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题7 【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,

8、设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:

9、D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键8 【答案】C 【解析】由解得.9 【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2函数f(x)=ax+1的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和a0=1(a0且a1),属于基础题10【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C11【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 12【答案】C【解析】解:易证所得三棱锥为正四面体

10、,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题二、填空题13【答案】【解析】设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA=,圆的半径为r=,sin=,cos=,tan=,tan2=,故答案为:。14【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考

11、查定积分知识的运用,解题的关键是利用定积分求面积15【答案】4 【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4故答案为:416【答案】160 【解析】解:由于(x)6展开式的通项公式为 Tr+1=(2)rx62r,令62r=0,求得r=3,可得(x)6展开式的常数项为8=160,故答案为:160【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题17【答案】2 【解析】解:一组数据2,x,4,6,10的平均值是5,2+x+4+6+10=55,解得x=3,

12、此组数据的方差 (25)2+(35)2+(45)2+(65)2+(105)2=8,此组数据的标准差S=2故答案为:2【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法18【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面

13、积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,故C正确;D如下图,M中的直线所能围成的正三角

14、形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC三、解答题19【答案】 【解析】解:(1)证明:任取x1、x21,1,且x1x2,则f(x1)f(x2)=f(x1)+f(x2)0,即0,x1x20,f(x1)f(x2)0则f(x)是1,1上的增函数;(2)由于f(x)是1,1上的增函数,不等式即为1x+1,解得x1,即解集为,1);(3)要使f(x)m22am+1对所有的x1,1,a1,1恒成立,只须f(x)maxm22am+1,即1m22am+1对任意的a1,

15、1恒成立,亦即m22am0对任意的a1,1恒成立令g(a)=2ma+m2,只须,解得m2或m2或m=0,即为所求20【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工

16、作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作,它的概率为:;若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P=p2+,可得PP=p2+,=故当p=时,P=P,即增加2个元件,不改变通讯器械的有效率;当0p时,PP,即增加2个元件,通讯器械的有效率降低;当p时,PP,即增加2个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目21【答案】【解析】 ,即圆的标准

17、方程为 直线的普通方程为 所以,圆的圆心到直线的距离为 由,解得或 所以 22【答案】或.【解析】试题分析:根据两点的斜率公式,求得,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,所以,由图可知,过点的直线与线段有公共点, 所以直线的斜率的取值范围是:或.考点:直线的斜率公式.23【答案】 【解析】(本小题满分12分)()证明:因为AE=AF,点G是EF的中点,所以AGEF又因为EFAD,所以AGAD因为平面ADEF平面ABCD,平面ADEF平面ABCD=AD,AG平面ADEF,所以AG平面ABCD()解:因为AG平面ABCD,ABAD,所以AG、AD、AB两两垂直以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t0),则E(0,1,t),F(0,1,t),所以=(4,1,t),=(4,4,0),=(0,1,t)设平面ACE的法向量为=(x,y,z),由=0, =0,得,令z=1,得=(t,t,1)因为BF与平面ACE所成角的正弦值为,所以|cos|=,即=,解得t2=1或所以AG=1或AG=【点评】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论