




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,1.2应用举例(2),设计问题,创设情境,塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家.他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行.他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已.塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。 设问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?,信息
2、交流,揭示规律,解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解,运用规律,解决问题,例1AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,解:选择一条水平基线HG,使H、G、B三点在同一条直线上由在H、G两点用测角仪器测得A的仰角分别是、,CD = A,测角仪器的高是h, 那么,在ACD中,根据正弦定理可得 , AB=AE+h=acsin+h= +h.,例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高
3、为27.3 m,求出山高CD(精确到1 m),例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.,练习:用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方向的上空,分别测得气球的仰角和,已知BD间的距离为A,测角仪的高度为B,求气球的高度.,反思小结,观点提炼,解三角形应用题的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图 (2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型 (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初二班主任个人述职报告范文模板-1
- 备战2023年高考地理专题复习新题典题精练06-水循环(原卷版)
- 2025年陶瓷生产加工机械项目合作计划书
- 基于大数据的教育政策分析与调整
- 教育心理学在体育训练中的应用-运动员潜能的挖掘
- 教育行业品牌建设与精准营销手段
- 创新教育新媒体材料的应用与思考
- 教育大数据分析助力智慧校园建设
- 儿童保护法案与教育法规的关联分析
- 家庭教育中的教育心理学激发孩子潜能的技巧
- GB/T 8097-2025收获机械联合收割机测试程序和性能评价
- 2025年供应链管理与运作考试题及答案分享
- 职业技术学院公共机房台式电脑采购服务方案投标文件(技术方案)
- 主管护师《专业实践能力》考试真题及答案(2025年新版)
- 井下探矿管理制度
- 2025年针灸推拿专业考试试题及答案
- 医疗信息化设备项目立项申请报告
- 2024法律职业资格(主观题)真题含答案
- 《插花艺术》教材任务-项目二 任务一 半球型插花作品制作
- 2025-2030中国高超音速技术行业市场发展趋势与前景展望战略研究报告
- 安全多方计算方案
评论
0/150
提交评论