




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、27.2 相似三角形,113中学 九年级数学,知识回顾,1、相似多边形的判定,2、什么叫相似比,3、最简单的相似多边形是什么图形,新课导入,A =A1,,B =B1,,C =C1,,如果,则ABC 与A1B1C1 相似,,记作ABC A1B1C1。,要把表示对应角顶点的字母写在对应的位置上。,注意,相似比,相似的表示方法,符号: 读作:相似于,如何证明两个三角形相似呢?,任意平移l5,再度量AB,BC,DE,EF的长度. 相等吗?,探究,事实上,当L3/L4/L5时,都可以得到,,还可以得到:,平行线分线段成比例定理:,三条平行线截两条直线,所得的对应线段的比相等.,平行于三角形一边的直线截其
2、他两边(或两边的延长线),所得的对应线段的比相等.,如图,在ABC中, DEBC,DE分 别交AB、AC于点D、E, ADE与ABC有 什么关系?,F,思 考 ?,相似三角形判定的预备定理,即: 在ABC中, 如果DEBC, 那么ADEABC,A型,你还能画出其他图形吗?,平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。,延伸,即: 如果DEBC, 那么ADEABC,你能证明吗?,X型,M,N,相似具有传递性,ADEABC,M,N,如果再作 MNDE ,共有多少对相似三角形?,AMNADE,AMNABC,共有三对相似三角形。,已知:,ABCA1B1C1.,求
3、证:,证明:在线段 (或它的延长线)上截取 ,过点D作 ,交 于点E根据前面的定理可得 .,D,E,又,D,E,(SSS),三角形相似判定定理之一,求证:BAD=CAE。,ABCADE BAC=DAE BACDAC =DAEDAC 即BAD=CAE,小练习,已知:,解:,你能证明吗?,三角形相似判定定理之二,ABCA1B1C1.,即: 如果,B =B1 .,那么,A,B,C,A,B,C,三角形相似判定定理之三,如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?,一角对应相等的两个三角形不一定相似。,ACD CBD ABC,小练习,找出图中所有的相似三角形。,“双垂直”三角形,有三对
4、相似三角形: ACD CBD CBD ABC ACD ABC,已知:,ABCA1B1C1.,求证:,你能证明吗?,RtABC 和 RtA1B1C1.,如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。,判定三角形相似的定理之四,ABCA1B1C1.,即: 如果,那么,RtABC 和 RtA1B1C1.,课堂小结,1. 相似图形三角形的判定方法:,通过定义(三边对应成比例,三角相等),相似三角形判定的预备定理,三边对应成比例,两三角形相似,两边对应成比例且夹角相等,两三角形相似,两角对应相等,两三角形相似,两直角三角形的斜边和一条直角边对应成比 例,两直角三角形相似,对应角相等。 对应边成比例。,2. 相似三角形的性质:,(1)所有的等腰三角形都相似。 (2)所有的等腰直角三角形都相似。 (3)所有的等边三角形都相似。 (4)所有的直角三角形都相似。 (5)有一个角是100 的两个等腰三角形都相似。 (6)有一个角是70 的两个等腰三角形都相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物化学(第4版)课件 第6章 生物氧化
- 现实题材纪录片的人物塑造策略研究-以毕业作品《追星星的人》为例
- 身体健康素质教育体系构建与实施
- 节约粮食中班健康教案
- 大学交通安全与法治教育
- 清洗外墙安全培训
- 颅骨说课课件
- 宝宝夜间急救方案护理
- 预防残疾主题班会课件
- 预防儿童疾病课件教学
- 技术、售后服务计划及质量保障措施
- 2025年度地质勘探监理服务合同范本
- 保山隆阳区小升初数学试卷
- 2025年上半年北京市西城区教委事业单位公开招聘考试笔试易考易错模拟试题(共500题)试卷后附参考答案
- RoHS知识培训课件
- 2024-2025学年北京西城区高一(上)期末语文试卷(含答案)
- 2025年贵州贵旅集团雷山文化旅游产业发展有限责任公司招聘笔试参考题库附带答案详解
- 2024年初升高数学衔接教材讲义
- 血小板减少护理查房课件
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 办公用品、易耗品供货服务方案
评论
0/150
提交评论