




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、玉环县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知实数x,y满足,则目标函数z=xy的最小值为( )A2B5C6D72 命题“设a、b、cR,若ac2bc2则ab”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A0B1C2D33 设函数y=sin2x+cos2x的最小正周期为T,最大值为A,则( )AT=,BT=,A=2CT=2,DT=2,A=24 在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A33
2、% B49% C62% D88%5 在三角形中,若,则的大小为( )ABCD6 设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D47 已知向量与的夹角为60,|=2,|=6,则2在方向上的投影为( )A1B2C3D48 在二项式(x3)n(nN*)的展开式中,常数项为28,则n的值为( )A12B8C6D49 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)经过2个小时,这种细菌由1个可繁殖成( )A512个B256个C128个D64个10冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设
3、备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对11二项式(x2)6的展开式中不含x3项的系数之和为( )A20B24C30D3612已知双曲线的方程为=1,则双曲线的离心率为( )ABC或D或二、填空题13复数z=(i虚数单位)在复平面上对应的点到原点的距离为14在(x2)9的二项展开式中,常数项的值为15若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=16多面体的三视图如图所示,则该多面体体积
4、为(单位cm)17下列命题:终边在y轴上的角的集合是a|a=,kZ;在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;函数y=sin(x)在0,上是减函数其中真命题的序号是18在正方形中,,分别是边上的动点,当时,则的取值范围为 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力三、解答题19记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 20解不等式a2x
5、+7a3x2(a0,a1)21函数f(x)=sin(x+)(0,|)的部分图象如图所示()求函数f(x)的解析式()在ABC中,角A,B,C所对的边分别是a,b,c,其中ac,f(A)=,且a=,b=,求ABC的面积22求下列函数的定义域,并用区间表示其结果(1)y=+;(2)y=23如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;24如图,直四棱柱ABCDA1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点(1)证明:平面MNE平面D1DE;(2)证明:MN平面D1DE玉环县第二中学2018-2019学年上学
6、期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=xy平移到点A时,直线z=xy在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=xy取最小值为2故选A2 【答案】C【解析】解:命题“设a、b、cR,若ac2bc2,则c20,则ab”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、cR,若ab,则ac2bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性
7、质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键3 【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos+cos2xsin)=2sin(2x+),T=,A=2故选:B4 【答案】B【解析】5 【答案】A【解析】由正弦定理知,不妨设,则有,所以,故选A答案:A 6 【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题7 【答案
8、】A【解析】解:向量与的夹角为60,|=2,|=6,(2)=2=22262cos60=2,2在方向上的投影为=故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目8 【答案】B【解析】解:展开式通项公式为Tr+1=(1)rx3n4r,则二项式(x3)n(nN*)的展开式中,常数项为28,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题9 【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个故选:D【点评】本题考查数列的应用,考查了等比数列
9、的通项公式,是基础的计算题10【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题11【答案】A【解析】解:二项式的展开式的通
10、项公式为Tr+1=(1)rx123r,令123r=3,求得r=3,故展开式中含x3项的系数为(1)3=20,而所有系数和为0,不含x3项的系数之和为20,故选:A【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题12【答案】C【解析】解:双曲线的方程为=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=焦点坐标在y轴时,a2=2m,b2=m,c2=3m,离心率e=故选:C【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点二、填空题13【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在
11、复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力14【答案】84 【解析】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题15【答案】1或0 【解析】解:满足约束条件的可行域如下图阴影部分所示:kxy+10表示地(0,1)点的直线kxy+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kxy+
12、1=0与y轴垂直,此时k=0或直线kxy+1=0与y=x垂直,此时k=1综上k=1或0故答案为:1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kxy+1=0与y轴垂直或与y=x垂直,是解答的关键16【答案】cm3 【解析】解:如图所示,由三视图可知:该几何体为三棱锥PABC该几何体可以看成是两个底面均为PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:PCD的面积S=44=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=84=cm3,故答案为: cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的
13、三视图分析出几何体的形状是关键17【答案】 【解析】解:、终边在y轴上的角的集合是a|a=,kZ,故错误;、设f(x)=sinxx,其导函数y=cosx10,f(x)在R上单调递减,且f(0)=0,f(x)=sinxx图象与轴只有一个交点f(x)=sinx与y=x 图象只有一个交点,故错误;、由题意得,y=3sin2(x)+=3sin2x,故正确;、由y=sin(x)=cosx得,在0,上是增函数,故错误故答案为:【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关
14、键18【答案】(,)上的点到定点的距离,其最小值为,最大值为,故的取值范围为三、解答题19【答案】【解析】解:(1)由2x30 得 x,M=x|x由(x3)(x1)0 得 x1 或x3,N=x|x1,或 x3(2)MN=(3,+),MN=x|x1,或 x3,CR(MN)=【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题20【答案】 【解析】解:当a1时,a2x+7a3x2等价于2x+73x2,x9;当0a1时,a2x+7a3x2等价于2x+73x2x9综上,当a1时,不等式的解集为x|x9;当0a1时,不等式的解集为x|x9【点评】本题考查指数不等式的解法
15、,指数函数的单调性的应用,考查分类讨论思想以及转化思想的应用21【答案】 【解析】解:()由图象可知,T=4()=,=2,又x=时,2+=+2k,得=2k,(kZ)又|,=,f(x)=sin(2x)6分()由f(A)=,可得sin(2A)=,ac,A为锐角,2A(,),2A=,得A=,由余弦定理可得:a2=b2+c22bccosA,可得:7=3+c22,即:c23c4=0,c0,解得c=4ABC的面积S=bcsinA=12分【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(x+)的部分图象确定其解析式等知识的应用,属于基本知识的考查22【答案】 【解析】解:(1)y=+,解得x2且x2且x3,函数y的定义域是(2,3)(3,+);(2)y=,解得x4且x1且x3,函数y的定义域是(,1)(1,3)(3,423【答案】(1)证明见解析;(2).【解析】试题解析:(2)在三角形中,由,得,则,底面平面,平面平面,且平面平面,平面,则平面平面,在平面内,过作,交于,连结,则为直线与平面所成角。在中,由,得,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区居民健康教育活动实施方案
- 少儿女生教育体系构建与实践路径
- 心理健康教育体系构建
- 学校冬季安全教育
- 康宝莱体重管理课
- 【荆州】2025年湖北荆州市石首市企事业单位人才引进170人笔试历年典型考题及考点剖析附带答案详解
- 小学一年级清廉教学课件
- 幼儿天气教学课件
- 课件教学的问题
- 整体护理课件
- 2024年省石棉县人力资源和社会保障局关于公开考核招考综合类事业单位工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- JJG 971-2019液位计检定规程
- 云南省楚雄州2022-2023学年高一下学期期末考试化学试题(解析版)
- 自动售货机投放方案
- 规范预防接种知情告知课件
- 2023陕西省中考英语真题试卷和答案
- 中国传媒大学开题报告模板
- 水电预埋预留培训课件
- 注塑车间工作总结计划
- WS-T 10010-2023 卫生监督快速检测通用要求(代替WS-T 458-2014)
- 医院零星维修工程投标方案(技术标)
评论
0/150
提交评论