




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、7.5 The Zero-State Response,If all of the initial conditions have zero value, then the circuit is said to be in the zero-state, and the solution to nonzero inputs for the circuit is known as the zero-state response. (零状态响应),Zero-State Response Of An RC Circuit,t=0:uC(0)=0,The particular solution:,It
2、 is usually called the forced response or the steady-state response.,uC ()=US ,uC p = uC ()=US,The homogeneous solution:,The characteristic equation: RCS+1=0,The characteristic value:,The homogeneous solution is usually called the natural or transient response.,uC (0+)=uC (0)=0=US +A A= US,The gener
3、al form of the step response of RC circuits:,1 zero-state response of DC input:,(2)Discussion,7.6 Step Response Circuit,When the dc source is suddenly applied, the signal of the source can be modeled as a step function, the response is known as a step response.,The step response of a circuit is its
4、behavior when the excitation is the step function, which may be a voltage or a current source.,7.6.1 Step Response of RC Circuits,Us1(t),t=0:uC(0)=U0,Its solution includes two parts : the particular solution and the homogeneous solution.,Complete response: external source and initial condition of th
5、e storage element,The particular solution:,It is usually called the forced response or the steady-state response.,uC ()=US ,uC p = uC ()=US,The homogeneous solution:,The characteristic equation: RCS+1=0,The characteristic value:,The homogeneous solution is usually called the natural or transient res
6、ponse.,uC (0+)=uC (0)=U0=US +A A= U0 US,The general form of the step response of RC circuits:,Complete Response,uc(0+)=U0,There are two ways to excite the circuit: By initial conditions of the storage elements in the circuits. By independent sources.,1、Two ways to determine complete response:,(1)to
7、linear circuit:,Complete response,Zero_state response,Zero_input response,Complete response = zero-input response + zero-state response.,Zero_input response is a special complete response when y( )=0;,Zero_state response is a special complete response when y( 0 )=0;,y(t) = yh(t) + yp(t),(2) To linea
8、r circuit, complete response=natural response+forced response,Thus, to find the step response requires three things: The initial value y(0+); The final value y( ); The time constant ;,(2) 与输入无关,归结为求由电容元件或电感元件观 察的入端电阻R,关于uc(0-),iL(0-) 和 uc(0+),iL(0+),(1) y() 归结为求解电阻网络(电容元件相当于开路, 电感元件相当于短路),Three fact
9、ors:,Switch s is closed at t=0, uc(0-)=2V, calculate the response uc.,+ u -,iC,Example:,Method 1:,Reduce the circuit at first.,Method 2:,L=L1+L2=3mH,Drill 1. Calculate Uc.,uC(0)=150V,uC(0+)=150V,=0.3 5000/150=10S,uC=100 + 50e0.1t (t 0),uC()=35000/150=100V,Drill 2. Calculate Ul.,iL(0)=5mA,iL(0+)=5mA,
10、iL()=5+5=10mA,uL(0+)=5V,uL()=0,=103S,iL=10 5e1000t mA,uL=5e1000t V,Drill 3. Calculate Uc, il, ik.,uC(0)=20V,iL(0)=1A,uC(0+)=20V,iL(0+)=1A,i (0+)=20/15=4/3A,uC()=1.215=18V,i()=30/25=1.2A,iL()=0,C=3106 150/25=18 106 S,L=2103/5=1/2500 S,iL=e2500t A,solution:,uC( )=US=6V, uC (0+)=uC (0)=0, 1=C(R1+R2)=0.
11、52=1s,t=2s:uC (2)=66e2=5.19 V,uC ( )=6V, uC (2+)=uC (2)=5.19 V, 2=R1C=0.5s,+ U* -,Fig.a,Fig.b,N is a linear resistive circuit, in Fig.a, c=1F, Uc(0)=0, Us=U0, u=(0.75-e-2t)V; In Fig.b, L=1H, iL(0 )=0, calculate u*.,Special Cases:,已知:,解:此题为初始值跃变情况,电流发生跃变,回路磁链守恒,电容电压初值一定会发生跃变。,合k后,已知图中E=1V , R=1 , C1=
12、0.25F , C2=0.5F 。 求: uC1 、 uC2 、 iC1 和 iC2 并画出波形。,节点电荷守恒,q(0+)= q(0-),uC() = 1V, = R (C1+C2),7.7 First_order OP AMP Circuits,An op amp circuit containing a storage element will exhibit first_order behavior.,Examples: Differentiators and integrators,Analyze first_order op amp circuits,Classical way:
13、write the circuit equation in the first_order differential form at first, get the solution. Use the general form of the complete response of the first_order circuits.,Drill 1: For the op amp circuit , find vo(t) for t0, given that v(0)=3V.,Solution: vo(0+)=12V, Vo()=0V. Req=20K =ReqC=0.1s,7.7 First_order OP AMP Circ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台州职高面试题及答案
- 车辆转让与维修保养培训及配件供应合同
- 智能停车诱导系统建设与车位租赁合同
- 长铁丝考试题及答案
- 矿石分区管理方案
- 手工环保面试题及答案
- 水利施工技术方案
- 围棋初步考试题及答案
- 2026版《全品高考》选考复习方案生物38 第26讲 免疫调节含答案
- 玻璃破碎安保措施方案
- 企业管理-某公司虚拟股份管理暂行办法
- 兼职中医师聘用合同范本
- 密闭空间环氧树脂防腐施工方案
- 渣土运输方案
- 2025-2030中国包装印刷行业现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 董事长给应届生培训
- 高职大学生心里健康教育(第2版)-课程思政案例(结合知识点)
- Drager呼吸机使用指南
- 办公用品、易耗品供货服务方案投标方案文件
- 民兵应急知识培训课件
- 酒吧装修施工方案
评论
0/150
提交评论