版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元二次方程的解 法,腾达中学:陈言明,2008.9.25,(1)直接开平方法,ax2=b(a0),(2)因式分解法,1、提公因式法,平方差公式,完全平方公式 2、十字相乘法,(3) 配方法,当二次项系数为1的时候,方程两边同加上一次项系数一半的平方,(4)公式法,当b-4ac0时,x=,一 直接开平方法,依据:平方根的意义,即,如果 x2=a , 那么x =,这种方法称为直接开平方法。,解题步骤:,4,写出方程的解 x1= ?, x2= ?,1、(3x -2)-49=0 2、(3x -4)=(4x -3),解:移项,得:(3x-2)=49 两边开平方,得:3x -2=7 所以:x= 所以x1
2、=3,x2= -,解:两边开平方,得: 3x-4=(4x-3) 3x -4=4x-3或3x-4= -4x+3 -x=1或 7x=7 x=-1,x=1,例题讲解,二 因式分解法,1 提公因式法,=0,(2),解:提公因式得:,2 平方差公式与完全平方公式,形如,运用平方差公式得:,形如,的式子运用完全平方公式得:,或,例题讲解,例1 解下列方程,(1),解:原方程变形为:,直接开平方得:,(2),解:原方程变形为:,3 十字相乘法,1 二次项系数为1的情况: 将一元二次方程常数项进行分解成两个数(式)p , q的乘积的形式,且p + q = 一次项系数。,步骤:,2 二次项系数不为1的情况: 将
3、二次项系数分成两个数(式)a ,b的乘积的形式,常数项分解成p ,q的乘积的形式,且a q +b p = 一次项系数。,P Q,A B,P Q,分解结果为 (x +p)(x +q)=0,分解结果为 (ax +p)(bx +q)=0,1 1,例题讲解,用十字相乘法解下列方程,x2x28=0,(x7)(x+4)=0,x7=0或x+4=0,x1=7,x2= -4,例题讲解,例2,三 配方法,我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法,平方根的意义:,完全平方式:式子 a22ab+b2 叫完全平方式,且a22ab+b2 =(ab)2.,如果x2=a, 那么
4、x=,用配方法解一元二次方程的方法的助手:,用配方法解一元二次方程: 2x2-9x+8=0,1.化1:把二次项系数化为1;,3.配方:方程两边都加上一次项系数绝对值一半的平方;,4.变形:方程左边分解因式,右边合并同类;,5.开方:两边开平方;,6.求解:解一元一次方程;,7.定解:写出原方程的解.,2.移项:把常数项移到方程的右边;,例题讲解,例1. 用配方法解下列方程 x2+6x-7=0,例题讲解,例2. 用配方法解下列方程 2x2+8x-5=0,四 公式法,一般地,对于一元二次方程 ax2+bx+c=0(a0),上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为
5、公式法,提示: 用公式法解一元二次方程的前提是: 1.必需是一元二次方程。 2.b2-4ac0.,例1 用公式法解方程 2x2-9x+8=0,1.变形:化已知方程为一般形式;,3.计算: b2-4ac的值;,4.代入:把有关数值代入公式计算;,5.定解:写出原方程的根.,2.确定系数:用a,b,c写出各项系数;,例题讲解,例2. 用公式法解方程 2x2+5x-3=0 解: a=2 b=5 c= -3 b2-4ac=52-42(-3)=49,例题讲解,例 3 :,解:化简为一般式:,这里 a=1, b= , c= 3.,b2 - 4ac=( )2 - 413=0,即:x1= x2=,例题讲解,1、把方程化成一般形式。 并写出a,b,c的值。 2、求出b2-4ac的值,将其与0比较。 3、代入求根公式 :,用公式法解一元二次方程的一般步骤:,4、写出方程的解: x1=?, x2=?,(a0, b2-4ac0),X=,请你选择最恰当的方法解下列一元二次方程 1、3x -1=0 2、x(2x +3)=5(2x +3) 3、x -4x-2=0 4、2 x -5x+1=0,1、形如(x-k)=h的方程可以用直接开平方法求解; 2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个跟丢失了。要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽省招聘劳务派遣制机场消防员二次备考笔试试题及答案解析
- 2025北京第一医学中心招聘社会用工岗位138人计划备考笔试试题及答案解析
- 2025福建漳州市交通发展集团有限公司招聘中一线岗位复面及相关事项考试备考题库及答案解析
- 2026年山西省选调生招录(面向西安电子科技大学)模拟笔试试题及答案解析
- 2026年庄河市大学生政务实习“扬帆计划”暨寒假“返家乡”社会实践活动开始!考试备考题库及答案解析
- 2026年甘肃天水市事业单位引进高层次人才(219人)备考笔试试题及答案解析
- 2025浙江嘉兴市海宁市老干部活动中心招聘1人参考笔试题库附答案解析
- 2025青海海南州同德县人民医院招聘消防专职人员1人备考笔试题库及答案解析
- 2025年江西省赣房投资集团有限公司社会招聘6人参考笔试题库附答案解析
- 2025海南省海宾酒店管理集团有限公司招聘2人备考笔试题库及答案解析
- 2025至2030中国船用防冻剂行业项目调研及市场前景预测评估报告
- 智慧停车系统培训课件大纲
- 阴囊挫伤课件
- 金融新势力:智能投顾
- 融媒体传播专业知识培训课件
- 保持器课件教学课件
- 去毛刺培训知识课件
- 2025公共基础知识考试题库及答案详解(真题汇编)
- 实施指南(2025)《JC-T 2822-2024 水泥替代原料》
- 2025餐饮联营合同-协议范本(标准版)
- 中介服务选取管理办法
评论
0/150
提交评论