




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Neural Networks,Chapter 3,2,Outline,3.1 Introduction 3.2 Training Single TLUs Gradient Descent Widrow-Hoff Rule Generalized Delta Procedure 3.3 Neural Networks The Backpropagation Method Derivation of the Backpropagation Learning Rule 3.4 Generalization, Accuracy, and Overfitting 3.5 Discussion,3,3.
2、1 Introduction,TLU (threshold logic unit): Basic units for neural networks Based on some properties of biological neurons Training set Input: real value, boolean value, Output: di: associated actions (Label, Class ) Target of training Finding f(X) corresponds “acceptably” to the members of the train
3、ing set. Supervised learning: Labels are given along with the input vectors.,4,3.2.1 TLU Geometry,Training TLU: Adjusting variable weights A single TLU: Perceptron, Adaline (adaptive linear element) Rosenblatt 1962, Widrow 1962 Elements of TLU Weight: W =(w1, , wn) Threshold: Output of TLU: Using we
4、ighted sum s = WX 1 if s 0 0 if s 0 Hyperplane WX = 0,5,6,3.2.2 Augmented Vectors,Adopting the convention that threshold is fixed to 0. Arbitrary thresholds: (n + 1)-dimensional vector W = (w1, , wn, 1) Output of TLU 1 if WX 0 0 if WX 0,7,3.2.3 Gradient Decent Methods,Training TLU: minimizing the er
5、ror function by adjusting weight values. Two ways: Batch learning v.s. incremental learning Commonly used error function: squared error Gradient : Chain rule: Solution of nonlinearity of f / s : Ignoring threshod function: f = s Replacing threshold function with differentiable nonlinear function,8,3
6、.2.4 The Widrow-Hoff Procedure,Weight update procedure: Using f = s = WX Data labeled 1 1, Data labeled 0 1 Gradient: New weight vector Widrow-Hoff (delta) rule (d f) 0 increasing s decreasing (d f) (d f) 0 decreasing s increasing (d f),9,The Generalized Delta Procedure,Sigmoid function (differentia
7、ble): Rumelhart, et al. 1986,10,The Generalized Delta Procedure (II),Gradient: Generalized delta procedure: Target output: 1, 0 Output f = output of sigmoid function f(1 f) = 0, where f = 0 or 1 Weight change can occur only within fuzzy region surrounding the hyperplane (near the point f(s) = ).,11,
8、The Error-Correction Procedure,Using threshold unit: (d f) can be either 1 or 1. In the linearly separable case, after finite iterations, W will be converged to the solution. In the nonlinearly separable case, W will never be converged. The Widrow-Hoff and generalized delta procedures will find mini
9、mum squared error solutions even when the minimum error is not zero.,12,Training Process,Data,NN,X(k),f(k),d(k),-,Update Rule,13,3.3 Neural Networks,Need for use of multiple TLUs Feedforward network: no cycle Recurrent network: cycle (treated in a later chapter) Layered feedforward network jth layer
10、 can receive input only from j 1th layer. Example :,14,Notation,Hidden unit: neurons in all but the last layer Output of j-th layer: X(j) input of (j+1)-th layer Input vector: X(0) Final output: f The weight of i-th sigmoid unit in the j-th layer: Wi(j) Weighted sum of i-th sigmoid unit in the j-th
11、layer: si(j) Number of sigmoid units in j-th layer: mj,15, 3.5,16,3.3.3 The Backpropagation Method,Gradient of Wi(j) : Weight update:,Local gradient,17,Weight Changes in the Final Layer,Local gradient: Weight update:,18,3.3.5 Weights in Intermediate Layers,Local gradient: The final ouput f, depends
12、on si(j) through of the summed inputs to the sigmoids in the (j+1)-th layer. Need for computation of,19,Weight Update in Hidden Layers (cont.),v i : v = i : Conseqeuntly,20,Weight Update in Hidden Layers (cont.),Attention to recursive equation of local gradient! Backpropagation: Error is back-propagated from the output layer to the input layer Local gradient of t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供电职工就餐管理制度
- 依法高效审批管理制度
- 俄人公司印章管理制度
- 保利工程监督管理制度
- 保安公司器械管理制度
- 保安劳动安全管理制度
- 保安宿舍宠物管理制度
- 保安日常内务管理制度
- 保安车辆管理管理制度
- 保洁专员卫生管理制度
- 省级示范幼儿园评估细则解读 办园管理部分解读课件
- 浅析火灾延伸调查工作指引
- 2024年吉林长春市中考地理试卷真题(含答案解析)
- 2024年湖北黄冈市检察机关招聘雇员制检察辅助人员50人历年(高频重点复习提升训练)共500题附带答案详解
- DG-TJ 08-2255-2018 节段预制拼装预应力混凝土桥梁设计标准
- 2024年广东省中考道德与法治试卷(含答案)
- 2024年小区地下车位租赁合同
- 2024年广东省中考化学真题
- 期末监测 试题 2023-2024学年教科版科学六年级下册
- 光伏系统在智能温室大棚中的设计与应用
- 2024年新疆中考数学真题试卷及答案
评论
0/150
提交评论