巧用“等时圆”解物理问题_第1页
巧用“等时圆”解物理问题_第2页
巧用“等时圆”解物理问题_第3页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、巧用“等时圆”解物理问题一、 等时圆模型(如图所示)图a 图b 二、 等时圆规律:1、小球从圆的顶端沿光滑弦轨道静止滑下,滑到弦轨道与圆的交点的时间相等。(如图a)2、小球从圆上的各个位置沿光滑弦轨道静止滑下,滑到圆的底端的时间相等。(如图b)3、沿不同的弦轨道运动的时间相等,都等于小球沿竖直直径()自由落体的时间,即 (式中R为圆的半径。)三、等时性的证明设某一条弦与水平方向的夹角为,圆的直径为(如右图)。根据物体沿光滑弦作初速度为零的匀加速直线运动,加速度为,位移为,所以运动时间为 即沿各条弦运动具有等时性,运动时间与弦的倾角、长短无关。图1A四、应用等时圆模型解典型例题 例1:如图1,通

2、过空间任一点A可作无限多个斜面,若将若干个小物体从点A分别沿这些倾角各不相同的光滑斜面同时滑下,那么在同一时刻这些小物体所在位置所构成的面是( )A.球面 B.抛物面 C.水平面 D.无法确定【解析】:由“等时圆”可知,同一时刻这些小物体应在同一“等时圆”上,所以A正确。OABLLD图2 例2:如图2,在斜坡上有一根旗杆长为L,现有一个小环从旗杆顶部沿一根光滑钢丝AB滑至斜坡底部,又知OB=L。求小环从A滑到B的时间。【解析】:可以以O为圆心,以 L为半径画一个圆。根据“等时圆”的规律可知,从A滑到B的时间等于从A点沿直径到底端D的时间,所以有图3例3:如图3,在设计三角形的屋顶时,为了使雨水

3、能尽快地从屋顶流下,并认为雨水是从静止开始由屋顶无摩擦地流动。试分析和解:在屋顶宽度(2L)一定的条件下,屋顶的倾角应该多大?雨水流下的最短时间是多少?图4【解析】:如图4所示,通过屋顶作垂线AC与水平线BD相垂直;并以L为半径、O为圆心画一个圆与AC、BC相切。然后,画倾角不同的屋顶、从图4可以看出:在不同倾角的屋顶中,只有是圆的弦,而其余均为圆的割线。根据“等时圆”规律,雨水沿运动的时间最短,且最短时间为而屋顶的倾角则为图5 例4:如图5所示,在倾角为的传送带的正上方,有一发货口A。为了使货物从静止开始,由A点沿光滑斜槽以最短的时间到达传送带,则斜槽与竖直方向的夹角应为多少?图6【解析】:如图6所示,首先以发货口A点为最高点作一个圆O与传送带相切,切点为B,然后过圆心O画一条竖直线,而连接A、B的直线,就是既过发货口A,又过切点B的惟一的弦。 根据“等时圆”的规律,货物沿AB弦到达传送带的时间最短。因此,斜槽应沿AB方向安装。AB所对的圆周角为圆心角的一半,而圆心角又等于,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论