



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.3.3二次函数的特殊形式 班级 姓名 【学习目标】1.经历探索二次函数交点式的过程,体会方程与函数之间的联系;2.渗透数形结合的数学思想.【课前复习】1.根据二次函数的图象和性质填表:二 次 函 数对 称 轴 顶 点与坐标轴交点一般式与轴交与点( )顶点式2.用十字相乘法分解因式: 3.若一元二次方程有两实数根,则抛物线与轴交点坐标是 .【课堂助学】一、探索归纳:1.根据课前复习第3题的结果,改写下列二次函数: 2.求出上述抛物线与轴的交点坐标: 坐标: 3.归纳: 若二次函数与轴交点坐标是()、(),则该函数还可以表示为 的形式;反之若二次函数是的形式,则该抛物线与轴的交点坐标是 ,故我
2、们把这种形式的二次函数关系式称为 式.二次函数的图象与轴有2个交点的前提条件是 ,因此这也是 式存在的前提条件.练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. 与轴的交点坐标是: 与轴的交点坐标是: 二、典型例题:例1.已知二次函数的图象与轴的交点坐标是(3,0),(1,0),且函数的最值是3.求对称轴和顶点坐标.求出该二次函数的关系式.在下列平面直角坐标系中画出它的图像.(4)x取什么值时,y0?(5)x取什么值时,y0?(6)x取什么值时,y随x的增大而增大?(7)若二次函数的图象与轴的交点坐标是(3,0),(-1,0),则对称轴是 ;若二次函数的图象与轴的交点坐标是(-3
3、,0),(1,0),则对称轴是 ;若二次函数的图象与轴的交点坐标是(-3,0),(-1,0),则对称轴是 .归纳:若抛物线与轴的交点坐标是()、()则,对称轴是 .【拓展提升】已知二次函数的图象过点(-3,1),(1,1),且函数的最值是4.求对称轴和顶点坐标.在下列平面直角坐标系中画出它的图像. 求出该二次函数的关系式.归纳:已知A、B是抛物线上一对对称点,且A点坐标是()、B点坐标是()则,对称轴是 .【课堂检测】1.已知一条抛物线的开口大小、方向与均相同,且与轴的交点坐标是(2,0)、(-3,0),则该抛物线的关系式是 .2.已知一条抛物线与轴有两个交点,其中一个交点坐标是(-1,0)、
4、对称轴是直线,则另一个交点坐标是 .3.已知一条抛物线与轴的两个交点之间的距离为4,其中一个交点坐标是(0,0)、则另一个交点坐标是 ,该抛物线的对称轴是 .4.二次函数与轴的交点坐标是 ,对称轴是 . 5.请写出一个二次函数,它与轴的交点坐标是(-6,0)、(-3,0): .6.已知二次函数的图象与轴的交点坐标是(-1,0),(5,0),且函数的最值是3.求出该二次函数的关系式.(用2种方法)解法1: 解法2:【课外作业】1.已知一条抛物线的开口大小、方向与均相同,且与轴的交点坐标是(-2,0)、(-3,0),则该抛物线的关系式是 .2.已知一条抛物线的形状与相同,但开口方向相反,且与轴的交点坐标是(1,0)、(4,0),则该抛物线的关系式是 .3.已知一条抛物线与轴的两个交点之间的距离为3,其中一个交点坐标是(1,0)、则另一个交点坐标是 ,该抛物线的对称轴是 .4.二次函数与轴的交点坐标是 ,对称轴是 . 5.已知二次函数的图象与轴的交点坐标是(-1,0),(5,0),且函数的最值是-3.则该抛物线开口向 ,当 时,随的增大而增大.6.请写出一个开口向下、与轴的交点坐标是(1,0)、(-3,0)的二次函数关系式: .7.已知二次函数的图象与轴有两个交点,其中一个交点坐标是(0,0),对称轴是直线,且函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营养师笔记 不同人群的生理特点之幼儿青少年老年人的生理特点
- 由于对高速电机要进行流体场和温度场的分析
- 企业培训师考试课件
- 优化物流系统的设计
- 英语KET考试全真模拟卷含答案
- 高效叉车维修与专业团队服务承包合同
- 跨省车辆挂靠运营管理服务协议
- 智能化商品房物业管理合同
- 车辆物流运输保险合同
- 景区设计合同方案
- 经历是流经裙边的水
- 非外资独资或外资控股企业书面声明
- 《经济学基础》课程标准
- 降低手术患者术中低体温发生率
- 疼痛诊疗学课程教学大纲
- 患者跌倒坠床风险评估流程防范措施
- 病理生理学试题及答案
- 2023年保险知识竞赛题库
- GB/T 19851.11-2005中小学体育器材和场地第11部分:合成材料面层运动场地
- GA 1016-2012枪支(弹药)库室风险等级划分与安全防范要求
- 尹真人东华正脉皇极阖辟证道仙经
评论
0/150
提交评论