




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、文登区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.2 已知ACBC,AC=BC,D满足=t+(1t),若ACD=60,则t的值为( )ABC1D3 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D314 已
2、知偶函数f(x)=loga|xb|在(,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )Af(a+1)f(b+2)Bf(a+1)f(b+2)Cf(a+1)f(b+2)Df(a+1)f(b+2)5 ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为( )A. B.C. D. 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力6 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD
3、7 已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D8 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D69 特称命题“xR,使x2+10”的否定可以写成( )A若xR,则x2+10BxR,x2+10CxR,x2+10DxR,x2+1010函数f(x)=x2+,则f(3)=( )A8B9C11D1011执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?12在中,若,则( )A B C. D二、填空题13设f(x)是奇函数f(x)(xR
4、)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是14设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是15x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是16若非零向量,满足|+|=|,则与所成角的大小为17在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是18在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1若C=,则=三、解答题19(1)化简:(2)已知tan=3,计算 的值20已知函数,(1)求函数的单调区间;
5、(2)若存在,使得成立,求的取值范围;(3)设,是函数的两个不同零点,求证:21【常熟中学2018届高三10月阶段性抽测(一)】已知函数.(1)若函数是单调递减函数,求实数的取值范围;(2)若函数在区间上既有极大值又有极小值,求实数的取值范围.22【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数.。若在区间(1,+)上,函数f(x)是f1(x
6、),f2(x)的“活动函数”,求a的取值范围23(本题满分12分)已知向量,记函数.(1)求函数的单调递增区间;(2)在中,角的对边分别为且满足,求的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24已知数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a1,a2+6,a3成等差数列(1)求p的值及数列an的通项公式;(2)设数列bn满足bn=,证明bn文登区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【
7、答案】A.【解析】在中,故是充分必要条件,故选A.2 【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DEAC,垂足为E,作DFBC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1t)a;根据题意,ACD=60,DCF=30;即;解得故选:A【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义3 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x
8、5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题4 【答案】B【解析】解:y=loga|xb|是偶函数loga|xb|=loga|xb|xb|=|xb|x22bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=loga|x|当x(,0)时,由于内层函数是一个减函数,又偶函数y=loga|xb|在区间(,0)上递增故外层函数是减函数,故可得0a1综上得0a1,b=0a+1b+2,而函数f(x)=loga|xb|在(0,+)上单调递减f(a+1)f(b+
9、2)故选B5 【答案】D 【解析】,即为直角三角形,则,.所以内切圆半径,外接圆半径.由题意,得,整理,得,双曲线的离心率,故选D.6 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式7 【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:
10、2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力8 【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质9 【答案】D【解析】解:命题“xR,使x2+10”是特称命题否定命题为:xR,都有x2+10故选D10【答案】C【解析】解:函数=,f(3)=32+2=11故选C11【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退
11、出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误12【答案】B【解析】考点:正弦定理的应用.二、填空题13【答案】(2,0)(2,+) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为增函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是减函
12、数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(2,0)(2,+)故答案为:(2,0)(2,+)14【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a315【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,
13、25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题16【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值17【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题18【答案】= 【解析】解:在ABC中,角A,B,C的对边分别为a,b,
14、c,已知sinAsinB+sinBsinC+cos2B=1,sinAsinB+sinBsinC=2sin2B再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列C=,由a,b,c成等差数列可得c=2ba,由余弦定理可得 (2ba)2=a2+b22abcosC=a2+b2+ab化简可得 5ab=3b2, =故答案为:【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题三、解答题19【答案】 【解析】解:(1)=costan=sin(2)已知tan=3, =【点评】本题主要考查诱导公式、同角三角函数的基本关系,属于基础题20【答案】()的单调递
15、增区间为,单调递减区间为;()或;()证明见解析【解析】试题解析: (1)令,得,则的单调递增区间为;111.Com令,得,则的单调递减区间为(2)记,则,函数为上的增函数,当时,的最小值为存在,使得成立,的最小值小于0,即,解得或1(3)由(1)知,是函数的极小值点,也是最小值点,即最小值为,则只有时,函数由两个零点,不妨设,易知,令(),考点:导数与函数的单调性;转化与化归思想 21【答案】(1);(2).【解析】试题分析:(1)原问题等价于对恒成立,即对恒成立,结合均值不等式的结论可得;(2)由题意可知在上有两个相异实根,结合二次函数根的分布可得实数的取值范围是.试题解析:(2)函数在上
16、既有极大值又有极小值,在上有两个相异实根,即在上有两个相异实根,记,则,得,即.22【答案】(1) (2)a的范围是 .【解析】试题分析:(1)由题意得 f(x)=x2+lnx,f(x)在区间1,e上为增函数,即可求出函数的最值试题解析:(1)当 时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令 0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,若 ,令p(x)=0,得极值点x1=1,当x2x1=1,即 时,在(x2,+)上有p(x)0
17、,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;若 ,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足 ,所以 a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,23【答案】【解析】(1)由题意知,3分令,则可得,.的单调递增区间为().5分24【答案】 【解析】(1)解:数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a2=3+3p,a3=3+12p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度钢铁材料采购运输协议
- 2025版特色餐饮总经理聘用合同
- 二零二五年度泵站设备租赁与维护服务合同范本
- 二零二五年度新媒体内容编辑与运营合作协议
- 2025版新能源汽车销售居间代理协议
- 2025版茶叶茶点专卖店经营管理与服务合同
- 二零二五年度14年国际贸易合同范本-国际贸易新能源项目合作协议
- 二零二五年度精密仪器采购及供应商协同研发合同
- 2025届北京市丰台区北京第十二中学物理高二第二学期期末联考模拟试题含解析
- 二零二五年度高端商务楼全面清洁与维护服务合同模板
- 学堂在线 管理沟通的艺术 期末考试答案
- 劳务外包服务投标方案(技术标)
- 2024仁爱版初中英语单词表(七-九年级)中考复习必背
- GB∕T 17989.1-2020 控制图 第1部分:通用指南
- EN485.32003铝及铝合金薄板、带材和厚板第三部分(译文)
- 商混企业整合方案
- 连续波多普勒无线电引信论文
- 人力资源六大模块
- 双狐实用入门
- (完整版)应急预案评审表
- 小学英语作业设计论文5篇
评论
0/150
提交评论