




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、温泉县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若关于的不等式的解集为,则参数的取值范围为( )A B C D【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.2 已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)3 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限4 设集合A=x|y=ln(x1),集合B=y|y=2x,
2、则AB( )A(0,+)B(1,+)C(0,1)D(1,2)5 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A34种B35种C120种D140种6 已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)7 若动点A,B分别在直线l1:x+y7=0和l2:x+y5=0上移动,则AB的中点M到原点的距离的最小值为( )A3B2C3D48 “x0”是“x0”是的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必
3、要条件9 若f(x)为定义在区间G上的任意两点x1,x2和任意实数(0,1),总有f(x1+(1)x2)f(x1)+(1)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )f(x)=,f(x)=,f(x)=,f(x)=A4B3C2D110向高为H的水瓶中注水,注满为止如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是( )ABCD11设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD12已知函数f(x)
4、=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD二、填空题13【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是 14阅读下图所示的程序框图,运行相应的程序,输出的的值等于_. 15对于集合M,定义函数对于两个集合A,B,定义集合AB=x|fA(x)fB(x)=1已知A=2,4,6,8,10,B=1,2,4,8,12,则用列举法写出集合AB的结果为16已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为2,则直线的方程为_.17已知满足,则的取值范围为_.18已知点E、F分别在正方体的棱
5、上,且,则面AEF与面ABC所成的二面角的正切值等于 .三、解答题19在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x3,3y)(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程20衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市
6、决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率. 21设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值22若数列an的前n项和为Sn,点(an,Sn)在y=x的图象上(nN*),()求数列an的通项公式;()若c1=0,且对任意正整数n都有,求证:对任意正整数n2,总有23甲、乙两位选手为为备战我市即将举办的“推广妈祖文化印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙87898977747888
7、98()依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;()本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品答题顺序可自由选择,但答题失败则终止答题选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由24(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,两点(1)求证:;(2)的面积是否为定
8、值?若是,求出这个定值;若不是,请说明理由【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力温泉县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A 2 【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用3
9、【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A4 【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目5 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有=34种故选:A【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题6 【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)
10、=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D7 【答案】A【解析】解:l1:x+y7=0和l2:x+y5=0是平行直线,可判断:过原点且与直线垂直时,中的M到原点的距离的最小值直线l1:x+y7=0和l2:x+y5=0,两直线的距离为=,AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题
11、8 【答案】B【解析】解:当x=1时,满足x0,但x0不成立当x0时,一定有x0成立,“x0”是“x0”是的必要不充分条件故选:B9 【答案】C【解析】解:由区间G上的任意两点x1,x2和任意实数(0,1),总有f(x1+(1)x2)f(x1)+(1)f(x2),等价为对任意xG,有f(x)0成立(f(x)是函数f(x)导函数的导函数),f(x)=的导数f(x)=,f(x)=,故在(2,3)上大于0恒成立,故为“上进”函数;f(x)=的导数f(x)=,f(x)=0恒成立,故不为“上进”函数;f(x)=的导数f(x)=,f(x)=0恒成立,故不为“上进”函数;f(x)=的导数f(x)=,f(x)
12、=,当x(2,3)时,f(x)0恒成立故为“上进”函数故选C【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题10【答案】 A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系如图所示,此时注水量V与容器容积关系是:V水瓶的容积的一半对照选项知,只有A符合此要求故选A【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题11【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底
13、面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)12【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0
14、,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用二、填空题13【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线的下方.因为,故当时,函数单调递减; 当时,函数单调递增;故,而当时,故当且,解之得,应填答案.考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象
15、和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.14【答案】 【解析】解析:本题考查程序框图中的循环结构第1次运行后,;第2次运行后,;第3次运行后,;第4次运行后,;第5次运行后,此时跳出循环,输出结果程序结束15【答案】1,6,10,12 【解析】解:要使fA(x)fB(x)=1,必有xx|xA且xBx|xB且xA=6,101,12=1,6,10,12,所以AB=1,6,10,
16、12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题16【答案】【解析】解析: 设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即.17【答案】【解析】 考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)表示点与原点的距离;(2)表示点与点间的距离;(3)可表示点与点连线的斜率;(4)表示点与点连线的斜率.18【答案】【解析】延长EF交BC的延长线于P,则AP为面AE
17、F与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。三、解答题19【答案】 【解析】解:(1)由题意, =(2x+3)(2x3)+3y2=3,可化为4x2+3y2=12,即:;点P的轨迹方程为;(2)当直线l的斜率不存在时,|AB|=4,不合要求,舍去;当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx9=0,x1+x2=,x1x2=,|AB|=|x1x2|=,k=,直线l的方程y=x+1【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,
18、属于中档题20【答案】(1);(2) .【解析】111试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有种情况,其中第组的名志愿者至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1 (2)记第3组的3名志愿者为,第4组的2名志愿者为,则从5名志愿者中抽取2名志愿者有,共10种,其中第4组的2名志愿者至少有一名志愿者被抽中的有,共7种,所以第4组至少有一名志愿都被抽中的概率为.考点:1、分层抽样的应用;2、古典概型概率公式.21【答案】 【解析】解:()f(x)的定义域为(,+),f(x)=1+a2x3x2,由f(x)=0,得x1=,x2=,
19、x1x2,由f(x)0得x,x;由f(x)0得x;故f(x)在(,)和(,+)单调递减,在(,)上单调递增;()a0,x10,x20,x,当时,即a4当a4时,x21,由()知,f(x)在上单调递增,f(x)在x=0和x=1处分别取得最小值和最大值当0a4时,x21,由()知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,当0a1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1a4时,f(x)在x=0处取得最小值22【答案】 【解析】(I)解:点(an,Sn)在y=x的图象上(nN*),当n2时,化为,当n=1时,解得a1=(2)证明:对任意正整数n都有=2n+1,cn=(cncn1)+(cn1cn2)+(c2c1)+c1=(2n1)+(2n3)+3=(n+1)(n1)当n2时, =+=,又=【点评】本题考查了等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 假期滞留人员管理办法
- 内部竞聘流程管理办法
- 医疗机械机构管理办法
- 化工装置变更管理办法
- 公司资料管理办法抽查
- 北京工资支付管理办法
- 养护机械管理办法通知
- 关于坟墓占地管理办法
- 养老信息安全管理办法
- 兵团地方债务管理办法
- 2025年多重耐药菌培训知识试题及答案
- 港口装卸作业培训
- 2025年湖北省武汉市中考数学真题(无答案)
- 2025至2030中国航空球轴承行业项目调研及市场前景预测评估报告
- 钳工考试试题及答案
- 2025至2030中国牙科氧化锆块行业发展趋势分析与未来投资战略咨询研究报告
- 拖欠维修费车辆以车抵债协议范本
- 2025至2030中国复印机行业发展趋势分析与未来投资战略咨询研究报告
- 暑假安全家长会4
- 2024年安徽省泗县卫生局公开招聘试题带答案
- 2025年北京市高考化学试卷真题(含答案)
评论
0/150
提交评论