




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、相似三角形,1,我爱思考1:,世界上最高的树 红杉,我爱思考2:,中国最高的楼 台北101大楼,怎样测量这些非常高大物体的高度?,目录,1、相似多边形知识点回顾,2、相似三角形的判定,3、相似三角形的性质,4、相似三角形的预备定理,相似多边形的判定:,对应角相等,对应边的比相等 的两个多边形为相似多边形.,两个条件要同时具备,温馨回顾:,总结,相似多边形概念: (1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等. (2)相似多边形的识别:如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. (3)相似比:我们把相似多边形对应边的比称为相似比.,总结,相似多边形的性质:
2、 (1)相似多边形的对应角相等,对应边的比相等 (2)相似多边形的周长比等于相似比 (3)相似多边形的面积比等于相似比的平方,问题情境,在10倍的放大镜下看到的三角形与原三角形相比: 三角形的边长,周长,面积,角,发生什么关系?,总结,相似三角形的概念: (1)相似三角形的定义:形状相同的三角形是相似三角形. (2)相似三角形的表示方法: 用“”表示,读作相似于.如:ABC和DEF相似,可以写成ABCDEF,也可以写成DEFABC,读作ABC相似于DEF.,回顾并思考,三角、三边对应相等的两个三角形全等,三角对应相等, 三组对应边的比相等的两个三角形相似,角边角,A S A,角角边,A A S
3、,边边边,S S S,边角边,S A S,斜边与直角边,H L,判定三角形相似,是不是也有这么多种方法呢?,总结,相似三角形的判定方法: (1)如果两个三角形的三组对应边的比相等,那么这两个三角形相似; (2)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; (3)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. (4)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似.,(5)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;,已知:,ABCA
4、1B1C1.,求证:,证明:在线段 (或它的延长线)上截取 ,过点D作 ,交 于点E根据前面的定理可得 .,D,E,又,D,E,(SSS),如果两个三角形的三组对应边的比相等,那么这两个三角形相似。,判定三角形相似的定理之一,ABCA1B1C1.,即: 如果 那么,三边对应成比例,两三角形相似。,求证:BAD=CAE。,ABCADE BAC=DAE BACDAC =DAEDAC 即BAD=CAE,练一练,已知:,解:,已知:,ABCA1B1C1.,求证:,B =B1 .,你能证明吗?,如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。,判定三角形相似的定理之二,两边
5、对应成比例,且夹角相等, 两三角形相似。,ABCA1B1C1.,即: 如果,B =B1 .,那么,已知:,ABCA1B1C1.,求证:,A =A1,B =B1 .,你能证明吗?,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。,判定三角形相似的定理之三,两角对应相等,两三角形相似。,ABCA1B1C1.,即: 如果,那么,A =A1,B =B1 .,如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?,一角对应相等的两个三角形不一定相似。,ACD CBD ABC,练一练,找出图中所有的相似三角形。,“双垂直”三角形,有三对相似三角形: ACD CBD CB
6、D ABC ACD ABC,相似三角形对应高的比等于相似比, ABC A1B1C1 B = B1 又ADB = A1D1B1 =900 ADB A1D1B1(角角),D,D1,证明:,相似三角形对应角平分线的比等于相似比, ABC A1B1C1 B = B1,BAC = B1A1C1 AD,A1D1分别是BAC和B1A1C1的角平分线 BAD = B1A1D1 ADB A1D1B1(角角),D,D1,证明:,相似三角形对应中线的比等于相似比,D,D1,已知:,ABCA1B1C1.,求证:,你能证明吗?,RtABC 和 RtA1B1C1.,如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
7、斜边和一条直角边对应成比例, 那么这两个直角三角形相似。,真命题,ABCA1B1C1.,即: 如果,那么,RtABC 和 RtA1B1C1.,利用利用三角形相似可以解决一些不能 直接测量的物体的长度的问题,学校操场上的国旗旗杆的高度我们无法直接测量,你能否借助平行的太阳光线来测量呢?,轻松一刻,6m,1.2m,1.6m,古希腊数学家、天文学家泰勒斯利用相似三角形的原理,测量金字塔的高度。,D,E,A(F),B,O,2m,3m,201m,解:太阳光是平行线, 因此BAO= EDF,又 AOB= DFE=90 ABODEF,=,BO =,= 134,A,F,E,B,O,还可以有其他方法测量吗?,一
8、题多解,=,ABOAEF,OB =,平面镜,总结,相似三角形的性质: (1)相似三角形的对应角相等,对应边的比相等. (2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比. (3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.,理解,相似三角形的周长比等于相似比吗?,从而由等比性质有,相似三角形的周长比等于相似比.,思考,已知:如图, ABCABC,它们的相似比是K, AD、AD分别是高. 求证:,证明: ABCABC,相似三角形的面积比等于相似比的平方.,练一练:,已知两个三角形相似,请完成下列表格,2,2,4,2,10,10,10
9、0,如图,中,则:四边形:四边形=_ .,1:3:5,已知:梯形ABCD中ADBC,AD=36cm, BC=60cm,延长两腰BA,CD交于点 O,OFBC,交AD于E,EF=32cm,则OF=_.,F,80cm,运用,已知梯形ABCD中, ADBC,对角线AC、BD交于点O,若AOD的面积为4cm2, BOC的面积为9cm2, 则梯形ABCD的面积为_cm2,ADBC,25,总结,相似三角形判定的预备定理: 平行于三角形一边的直线与其他两边(或两边的延长线)相交。所构成的三角形与原三角形相似。,平行于三角形一边的直线与其他两边(或两边的延长线)相交。所构成的三角形与原三角形相似。, DEBC
10、,ADEABC,相似三角形判定的预备定理:,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等., DEBC, DEBC,数学符号语言,数学符号语言,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等,如图,ABC 中,DEBC,GFAB,DE、GF交于点,则图中与ABC相似的三角形共有多少个?请你写出来.,解: 与ABC相似的三角形有3个:,A ,如图,在ABC中,DGEHFIBC, (1)请找出图中所有的相似三角形; (2)如果AD=1,DB=3,那么DG:BC=_。,ADGAEHAFIABC,1:4,课堂小结,1. 相似图形三角形的判定方法
11、:,定义 预备定理 判定定理一 (三组对应边的比相等) 判定定理二 (两组对应边的比相等且夹角相等) 判定定理三 (两角对应相等),(三边对应成比例,三角相等),(SSS),(AA),(SAS),对应角相等。 对应边的比相等。 对应高的比等于相似比。 对应中线的比等于相似比。 对应角平分线的比等于相似比。,2. 相似三角形的性质:,(1)所有的等腰三角形都相似。 (2)所有的等腰直角三角形都相似。 (3)所有的等边三角形都相似。 (4)所有的直角三角形都相似。 (5)有一个角是100 的两个等腰三角形都相似。 (6)有一个角是70 的两个等腰三角形都相似。 (7)若两个三角形相似比为1,则它们
12、必全等。 (8)相似的两个三角形一定大小不等。,1. 判断下列说法是否正确?并说明理由。,随堂练习,1、若 BF=3,CF=2,AD=1.5,DF=6,你能求出线段AE的长度吗?,2,BDFBAC,DFAC,解:,DEBC,DFAC,四边形DFCE为平行四边形,FC=DE=2,EC=DF=6,6,AE=AC-CE=10-6=4,BDMBAC,解:MDAC,,又 MEAB,,CEMCAB,3份,1. 铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高_8_m。,迎考精炼,2.某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高为_4_。,3. ABC是
13、一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?,解:设正方形PQMN是符合要求的ABC的高AD与PN相交于点E。设正方形PQMN的边长为 x 毫米。 因为PNBC,所以APN ABC 所以,4. 小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动),A,D,B,C,E,0.8m,5m,10m,?,2.4m,5. 在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米?,6. 为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使ABBC,然后,再选点E,使ECBC,用视线确定BC和AE的交点D此时如果测得BD120米,DC60米,EC50米,求两岸间的大致距离AB,7如图,DEBC, (1)如果AD=2,DB=3,求DE:BC的值; (2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长,运用,8.某施工队在道路拓宽施工时遇到这样一个问题,马路旁边 原有一个面积为100平方米,周长为80米的三角形绿化地, 由于马路拓宽绿地被削去了一个角,变成了一个梯形,原 绿化地一边AB的长由原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训课件制作app
- 车辆运输与道路通行证代理合同
- 生态农业园场地承包与绿色产品开发合同
- 科技园区场地租赁印花税缴纳合同
- 餐饮企业厨房承包与绿色环保食材采购协议
- 餐饮企业员工社会保险与福利待遇合同
- 饲料设备建设方案模板
- 应急配送设计方案
- 房屋买卖合同及附属设施移交及使用及维护服务协议
- 美院雕塑考试题及答案
- GB/T 3633-1995钢结构用扭剪型高强度螺栓连接副技术条件
- GB/T 32891.2-2019旋转电机效率分级(IE代码)第2部分:变速交流电动机
- GB/T 18068.1-2012非金属矿物制品业卫生防护距离第1部分:水泥制造业
- 2022-2023学年甘肃省定西市成考专升本高等数学一自考预测试题(含答案)
- 2023年黄冈市融资担保集团有限公司招聘笔试题库及答案解析
- 电梯维护保养规则
- (新版)心理倾听师资格考试备考题库(精简250题)
- 宋龙渊道德经讲义
- 受限空间安全作业票填写模板(2022年更新)
- [计算机]力克工艺单软件kaledo_style案例
- 山东大学生物化学课件绪论
评论
0/150
提交评论