




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1,第 3 章,Dynamics of Rigid Body,2,刚体运动中形状和大小都保持不变的物体。 (a)刚体上各质点之间的距离保持不变。 (b)刚体有确定的形状和大小。 (c)刚体可看作是由许多质点(质元)组成的质点系。 一.刚体的平动和转动 如果刚体在运动中,刚体内任何两点的连线在空间的指向始终保持平行,这样的运动就称为平动。 在平动时,刚体内各质点的运动状态完全相同,因此平动刚体可视为质点。通常是用刚体质心的运动来代表整个刚体的平动。,3-1 刚体运动学,3,刚体的一般运动比较复杂。但可以证明,刚体一般运动可看作是平动和转动的结合。,如果刚体内的各个质点都绕同一直线(转轴)作圆周运
2、动,这种运动便称为转动。如果转轴是固定不动的,就称为定轴转动。,刚体在作定轴转动时,由于各质点到转轴的距离不同,所以各质点的线速度、加速度一般是不同的。 但由于各质点的相对位置保持不变,所以描述各质点运动的角量,如角位移、角速度和角加速度都是一样的。,二.定轴转动的描述,4,若角加速度 =c(恒量),则有,定轴转动刚体的运动,用角量描述。,5,一.刚体的角动量 刚体的角动量=刚体上各个质点的角动量之和。,5-2 刚体的定轴转动,式中: J=mi ri2 称为刚体对z轴的转动惯量。,Li=miiri=mi ri2 刚体对z轴的角动量就是 Lz=(mi ri2),=J,6,问题:为何动量的概念对刚
3、体已失去意义?,刚体对z轴的角动量: Lz= J (5-1),7,对各质点求和,并注意到,二.刚体定轴转动定理,按质点角动量定理(4-11)式,有,mi:,得,8,式(5-2)的意义是:质点系所受的合外力矩等于质点系的总角动量对时间的变化率。这个结论叫质点系角动量定理。 显然它也适用于定轴转动刚体这样的质点系。,9,上式称为物体定轴转动方程。 对定轴转动的刚体, J为常量, d /dt=, 故式(6-16)又可写成,上式是一矢量式, 它沿通过定点的固定轴z方向上的分量式为,这就是刚体定轴转动定理。,(5-3),(5-2),(Lz=J),10,应当指出,这里我们虽然借用上式来计算力矩,但对定轴转
4、动刚体来说,平行于转轴的力是不产生力矩的,因此,这里力矩公式中的力应理解为外力在垂直于转轴的平面内的分力。, (5-4)表明, 刚体所受的合外力矩等于刚体的转动惯量与刚体角加速度的乘积。,以上内容的学习要点:掌握刚体定轴转动定律及用隔离体法求解(刚体+质点)系统问题的方法。,11,质量m物体平动惯性大小的量度。 转动惯量J物体转动惯性大小的量度。,5-3 转动惯量,一.转动惯量的物理意义,12,J=mi ri2 (5-5) 即:刚体的转动惯量等于刚体上各质点的质量乘以它到转轴距离的平方的总和。 (2)质量连续分布刚体,(5-6),式中: r为刚体上的质元dm到转轴的距离。,(1)质量离散分布刚
5、体,二.转动惯量的计算,13,三.平行轴定理,Jc 通过刚体质心的轴的转动 惯量;,M 刚体系统的总质量; d 两平行轴(o,c)间的距离。,14,o,通过o点且垂直于三角形平面的轴的转动惯量为 JO=,(1)正三角形的各顶点处有一质点m,用质量不计的细杆连接,如图5-4。系统对通过质心C且垂直于三角形平面的轴的转动惯量为,3,+ml2,=2ml2,=ml2+(3m)r2=2ml2,例题5-1 质量离散分布刚体: J=mi ri2,ml2,15,(2)用质量不计的细杆连接的五个质点, 如图5-5所示。转轴垂直于质点所在平面且通过o点, 转动惯量为,JO=m.02,=30ml2,+2m(2l2)
6、,+3m(2l)2,+4ml2,+5m(2l2),16,记住!,(1)质量为m、长度为l的细直棒,可绕通过质心C且垂直于棒的中心轴转动,求转动惯量。,例题5-2 质量连续分布刚体:,若棒绕一端o转动,由平行轴定理, 则转动惯量为,解 方法:将细棒分为若干微元dm=(m/l)dx ,然后积分得,17,(3)均质圆盘(m,R)绕中心轴转动时,可将圆盘划分为若干个半径r、宽dr的圆环积分 :,(2)均质细圆环(m, R)绕中心轴转动时,其转动惯量为,18,解 由 M=J , = o+t 有外力矩时,例题5-3 以20N.m的恒力矩作用在有固定轴的转轮上,在10s内该轮的转速均匀地由零增大到100re
7、v/min。此时撤去该力矩,转轮经100s而停止。试推算此转轮对该轴的转动惯量。,撤去外力矩时, -Mr=J2 , 2=- /t2 (2) 代入t1=10s , t2=100s , =(1002)/60=10.5rad/s, 解式(1)、(2)得 J=17.3kg.m2 。,20=J1, 1= /t1 (因o=0),19,解 对柱体,由转动定律M=J有 mg.R=J 这式子对吗? 错!此时绳中张力Tmg。 正确的解法是用隔离体法。,例题5-4 质量为M、半径为R的匀质柱体可绕通过其中心轴线的光滑水平固定轴转动;柱体边缘绕有一根不能伸长的细绳,绳子下端挂一质量为m的物体,如图所示。求柱体的角加速
8、度及绳中的张力。,对m: mg-T=ma 对柱: TR=J a=R 解得 =2mg/(2m+M)R, T=Mmg/(2m+M)。,20,m: mg-T2= ma a=R1=r2 , 2=2ah 求解联立方程,代入数据,可得 =2m/s, T1=48N, T2=58N。,m1: T1R= m1R21,m2: T2r-T1r = m2r22,例题5-5 两匀质圆盘可绕水平光滑轴转动,质量m1=24kg, m2=5kg。一轻绳缠绕于盘m1上,另一端通过盘m2后挂有m=10kg的物体。求物体m由静止开始下落h=0.5m时,物体m的速度及 绳中的张力。,解 各物体受力情况如图所示。,21,例题5-6 一
9、根质量为m、长为l的均匀细棒AB,可绕一水平光滑轴o在竖直平面内转动,Ao= l/3。今使棒从水平位置由静止开始转动,求棒转过角 时的角加速度和角速度。,解 细棒AB受的重力可集中在质心,故重力的力矩为,22,完成积分得,讨论: (1)当=0时, =3g/2l, =0 ; (2)当=90时, =0,,又因,23,例题5-7 匀质圆盘:质量m、半径R,以o的角速度转动。现将盘置于粗糙的水平桌面上,摩擦系数为,求圆盘经多少时间、转几圈将停下来?,解 将圆盘分为无限多个半径为r、宽为dr的圆环,用积分计算出摩擦力矩。,24,于是得,由= o+ t = 0得,又由2-o2=2 , 所以停下来前转过的圈
10、数为,25,5-4 定轴转动的角动量守恒定律,(5-8),上式的物理意义是:合外力矩的冲量(冲量矩)等于物体角动量的增量。 若物体所受的合外力矩为零(即0)时,则 J =常量(5-9) 这表明:当合外力矩为零时,物体的角动量将保持不变,这就是定轴转动的角动量守恒定律。,定轴转动方程:,26,当系统所受的合外力力矩为零时,系统的总角动量的矢量和就保持不变。 对比: 系统角动量守恒是:,系统动量守恒是:,在日常生活中,利用角动量守恒的例子也是很多的。,系统角动量守恒定律:,(4-6),(5-10),27,图5-12,28,角动量守恒在现代技术中有着非常广泛的应用。例如直升飞机在未发动前总角动量为零
11、,发动以后旋翼在水平面内高速旋转必然引起机身的反向旋转。为了避免这种情况,人们在机尾上安装一个在竖直平面旋转的尾翼,由此产生水平面内的推动力来阻碍机身的旋转运动。与此类似,鱼雷尾部采用左右两个沿相反方向转动的螺旋浆来推动鱼雷前进,也是为了避免鱼雷前进中的自旋。安装在轮船、飞机、导弹或宇宙飞船上的回转仪(也叫“陀螺”)的导航作用,也是角动量守恒应用的最好例证。,以上内容的学习要点:掌握角动量守恒的条件及用角动量守恒定律求解问题的方法。,29,解 (1)杆+子弹:竖直位置,外力(轴o处的力和重力)均不产生力矩,故碰撞过程中角动量守恒:,解得,例题5-8 匀质杆:长为l、质量M,可绕水平光滑固定轴o
12、转动,开始时杆竖直下垂。质量为m的子弹以水平速度o射入杆上的A点,并嵌在杆中,oA=2l/3, 求:(1)子弹射入后瞬间杆的角速度; (2)杆能转过的最大角度。,30,由此得:,(2)杆在转动过程中显然机械能守恒:,由前,转动动能,平动动能,31,解 (1)碰撞过程角动量守恒:,例题5-9 长为2L、质量为m的匀质细杆,静止在粗糙的水平桌面上,杆与桌面间的摩擦系数为。两个质量、速率均为m和的小球在水平面内与杆的两端同时发生完全非弹性碰撞(设碰撞时间极短), 如图5-14所示。求: (1)两小球与杆刚碰后,这一系统的角速度为多少? (2)杆经多少时间停止转动?(不计两小球的质量),32,解得,(
13、2)摩擦力矩为,由= o+t得:,33,例题5-10 匀质园盘(M、R)与人( m ,视为质 点)一起以角速度o绕通过其盘心的竖直光滑固定轴转动,如图5-15所示。当此人从盘的边缘走到盘心时,圆盘的角速度是多少?,解 (1)系统(圆盘+人)什么量守恒? 系统角动量守恒:,34,减小,Jo,=(J+2mr2) ,35,解 (1)系统(圆盘+人)什么量守恒? 系统角动量守恒:,上式正确吗?,36,错!因为角动量守恒定律只适用于惯性系。 所以应代入人相对于惯性系(地面)的角动量。,人对地=,+,正确的角动量守恒式子是:,37,解出:,38,(2) 欲使盘静止,可令,得,式中负号表示人的运动方向与盘的
14、初始转动(o)方向一致。,39,解 系统(小球和环)在运动过程中哪些量守恒? 对固定轴AC角动量守恒:,(1),例题5-13 空心园环可绕光滑的竖直固定轴AC自由转动,转动惯量为Io ,半径为R,初始角速度为o 。小球m静止在A点,由于某种扰动,小球沿环向下滑动,求小球滑到与环心o在同一高度的B点时,环的角速度及小球相对于环的速度各为多少。(设环的内壁和小球都是光滑的,环截面很小),机械能守恒:,(2),40,由相对运动,对小球有,B表示小球在B点时相对于地面的竖直分速度(即相对于环的速度)。,由(2)得,由(1)得环的角速度为,41,刚体的转动动能为,一.刚体的转动动能 =刚体上各质点动能之
15、和。 设刚体绕一定轴以角速度 转动,第i个质点 mi到转轴的距离为ri , mi的线速度i=ri , (各质点的角速度相同); 相应的动能,质点的平动动能为,5-5 定轴转动中的功和能,42,设物体在力F作用下,绕定轴oz转动,则力F的元功是 dA=Fdscos(90o- ),(5-13),力矩的功率是,二.力矩的功,(5-14),即:力矩的元功等于力矩M和角位移d的乘积。,=Frsind,=Md (5-12),43,上式说明:合外力矩的功等于刚体转动动能的增量。这便是定轴转动的动能定理。,(5-15),三.刚体定轴转动的动能定理,对比:质点动能定理:,(J=恒量),44,一个包括有刚体在内的
16、系统,如果只有保守内力作功,则这系统的机械能也同样守恒。 在计算刚体的重力势能时,可将它的全部质量集中在质心。 刚体的机械能为,(5-16),式中, hc为刚体质心到零势面的高度。,四.机械能守恒定律在刚体系统中的应用,45,例题5-14 均匀细直棒:质量m、长为l,可绕水平光滑固定轴o转动。开始时,棒静止在竖直位置,求棒转到与水平面成角时的角速度和角加速度。,解 棒在转动的过程中,只有保守力(重力)作功,故机械能守恒。取水平面为零势面,于是有,由上得,46,讨论: 本题也可先由M=J求出 ,再用 =d/dt积分求出,如例题5-6那样。,角加速度:,47,例题5-15 如图5-21所示,有一由弹簧、匀质滑轮和重物M组成的系统,该系统在弹簧为原长时被静止释放。运动过程中绳与滑轮间无滑动。求:(1)重物M下落h时的速度;(2)弹簧的最大伸长量。,,= r,解 (1)系统机械能守恒:,48,(2)求弹簧的最大伸长量。,令=0,得弹簧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国多功能洒水枪行业市场发展前景及发展趋势与投资战略研究报告
- 2025年地方炼油厂分析报告
- 儿童美术创意画课件春天
- 2025年中国闭门器行业市场全景评估及发展战略规划报告
- 中国高梁行业市场运行态势与投资战略咨询报告
- 钢结构工程(监理)质量评估报告
- 2025年中国光通信器件市场运行态势及行业发展前景预测报告
- 企业临时用电培训课件
- 2025年中国搅拌机衬板行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国布料样板机行业市场发展前景及发展趋势与投资战略研究报告
- 2026年中考英语复习:338条核心短语背诵卡+默写卡
- 2025年天津市中考物理真题 (解析版)
- GA/T 2182-2024信息安全技术关键信息基础设施安全测评要求
- 2025年北京市中考物理试题(解析版)
- 培训物业客服部礼仪礼节
- 2025住建发布《房屋市政工程安全员开展岗前巡查指导手册》
- 2025-2030中国新能源汽车充电桩行业供需状况及投资战略规划分析报告
- 肿瘤患者血象解读与临床意义
- 院感知识手卫生培训内容
- 药物过敏性休克的急救护理讲课件
- 2025年 广州市能源融资租赁有限公司招聘考试笔试试题附答案
评论
0/150
提交评论