高中数学 3.2.2 函数模型的应用实例练习 新人教A版必修_第1页
高中数学 3.2.2 函数模型的应用实例练习 新人教A版必修_第2页
高中数学 3.2.2 函数模型的应用实例练习 新人教A版必修_第3页
高中数学 3.2.2 函数模型的应用实例练习 新人教A版必修_第4页
高中数学 3.2.2 函数模型的应用实例练习 新人教A版必修_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课后强化作业 新人教A版必修1一、选择题1随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系. 当x36 kPa时,y108 g/m3,则y与x的函数解析式为()Ay3x(x0) By3xCyx(x0) Dyx答案A2某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y5x4000,而手套出厂价格为每副10元,则该厂为了不亏本日产手套量至少为()A200副 B400副C600副 D800副答案D解析由10xy10x(5x4000)0,得x800.

2、3甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是()A甲比乙先出发B乙比甲跑的路程多C甲、乙两人的速度相同D甲先到达终点答案D解析由图象知甲所用时间短,所以甲先到达终点4某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪比上一年增加20%;另外,每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同若以今年为第一年,那么,将第n年企业付给工人的工资总额y(万元)表示成n的函数,其解析式为()Ay(3n5)1.2n2.4By81.2n2.4nCy(3n8)1.2n2.4Dy(3n5)1.2n12.4答案A5(2013

3、2014潍坊高一检测)下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()x45678910y15171921232527A.一次函数模型 B二次函数模型C指数函数模型 D双数函数模型答案A解析由表知自变量x变化1个单位时,函数值y变化2个单位,所以为一次函数模型6一天,亮亮发烧了,早晨6时他烧得很厉害,吃过药后感觉好多了,中午12时亮亮的体温基本正常,但是下午18时他的体温又开始上升,直到半夜24时亮亮才感觉身上不那么发烫了则下列各图能基本上反映出亮亮一天(024时)体温的变化情况的是()答案C解析从0时到6时,体温上升,图象是上升的,排除选项A;从6时到12时,体温

4、下降,图象是下降的,排除选项B;从12时到18时,体温上升,图象是上升的,排除选项D.二、填空题7现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:yx21,乙:y3x1,若又测得(x,y)的一组对应值为(3,10.2),则应选用_作为拟合模型较好答案甲解析代入x3,可得甲y10,乙,y8.显然选用甲作为拟合模型较好8(20132014徐州高一检测)用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过1%,则至少要清洗的次数是_(lg20.3010)答案4解析设至少要洗x次,则(1)x,x3.322,所以需4次9为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释

5、放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系为y()ta(a为常数)其图象如图根据图中提供的信息,回答问题:(1)从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的关系式为_(2)据测定,当空气中每立方米的含药量降到0.25mg以下时,学生才可进入教室,那么从药物释放开始至少经过_小时,学生才能回到教室答案(1)y(2)0.6解析(1)设0t时,ykt,将(0.1,1)代入得k10,又将(0.1,1)代入y()ta中,得a,y.(2)令()t0.25得t0.6,t的最小值为0.6.三、解答题10为了保护学生的视力,课桌椅

6、子的高度都是按一定的关系配套设计的研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:第一套第二套椅子高度x(cm)40.037.0桌子高度y(cm)75.070.2(1)请你确定y与x的函数关系式(不必写出x的取值范围)(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?为什么?解析(1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数关系式为ykxb.将符合条件的两套课桌椅的高度代入上述函数关系式,得y与x的函数关系式是y1.6x11.(2)把x42代入上述函数关系式中,有y1.6421178.2.

7、给出的这套桌椅是配套的点评本题是应用一次函数模型的问题,利用待定系数法正确求出k,b是解题的关键11某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:时间t50110250种植成本Q150108150(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系Qatb,Qat2btc,Qabt,Qalogbt.(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本解析(1)由提供的数据知道,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Qatb,

8、Qabt,Qalogbt中的任意一个进行描述时都应有a0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合所以,选取二次函数Qat2btc进行描述以表格所提供的三组数据分别代入Qat2btc得到,解得所以,描述西红柿种植成本Q与上市时间t的变化关系的函数为Qt2t.(2)当t150天时,西红柿种植成本最低为Q1502150100 (元/102kg)12某企业生产A,B两种产品,根据市场调查与与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产若平均投入生产两种产品,可获得多少利润?问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?解析(1)设A,B两种产品分别投资x万元,x0,所获利润分别为f(x)万元、g(x)万元由题意可设f(x)k1x,g(x)k2.根据图象可解得f(x)0.25x(x0)g(x)2(x0)(2)由(1)得f(9)2.25,g(9)26.总利润y8.25万元设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论