奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案_第1页
奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案_第2页
奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案_第3页
奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案_第4页
奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级_ 座号_ 姓名_ 分数_一、选择题1 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD2 在ABC中,sinB+sin(AB)=sinC是sinA=的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也非必要条件3 设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D4 的内角,所对的边分别为,已知,则( )111A B或 C或 D5 如图,在正方体中,是侧面内一动点,若

2、到直线与直线的距离相等,则动点的轨迹所在的曲线是( ) A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.6 设集合,集合,若 ,则的取值范围( )A B C. D7 已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )A3BCD8 数列中,对所有的,都有,则等于( )A B C D9 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD10执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为( )A4B5C6D7 1

3、1已知全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,则集合2,7,8是( )AMNBMNCIMINDIMIN12四棱锥的底面为正方形,底面,若该四棱锥的所有顶点都在体积为同一球面上,则( )A3BCD【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力二、填空题13设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为_1818 0792 4544 1716 5809 7983 8619

4、6206 7650 0310 5523 6405 0526 6238【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想14【徐州市第三中学20172018学年度高三第一学期月考】函数的单调增区间是_15已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 16的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.17已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 18已知、分别是三内角的对应的三边,若,则的取值范围是_【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换

5、能力、逻辑思维能力、运算求解能力、转化思想三、解答题19已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 20在平面直角坐标系中,已知M(a,0),N(a,0),其中aR,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”由此定义可判断以下说法中正确的是当a=7时,坐标平面内不存在黄金直线;当a=5时,坐标平面内有无数条黄金直线;当a=3时,黄金点的轨迹是个

6、椭圆;当a=0时,坐标平面内有且只有1条黄金直线21(本题满分15分) 已知函数,当时,恒成立(1)若,求实数的取值范围;(2)若,当时,求的最大值【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力22(本小题满分10分)已知函数(1)若求不等式的解集;(2)若的解集包含,求实数的取值范围23(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜

7、上残存的农药y(单位:微克)的统计表: xi12345yi5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式ycx2d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ix,有下列数据处理信息:11,38,(i)(yi)811, (i)2374,对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线方程ybxa的斜率和截距的最小二乘估计分别为 (3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水(结果保留1位有效数字)24如图,在四边形中, 四边形绕着直线旋转一周.(1)求所成的封闭

8、几何体的表面积;(2)求所成的封闭几何体的体积.奉化区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1 【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B2 【答案】A【解析】解:sinB+sin(AB)=sinC=sin(A+B),sinB+sinAcosBcosAsinB=sinAcosB+cosAsinB,sinB=2cosA

9、sinB,sinB0,cosA=,A=,sinA=,当sinA=,A=或A=,故在ABC中,sinB+sin(AB)=sinC是sinA=的充分非必要条件,故选:A3 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 4 【答案】B【解析】试题分析:由正弦定理可得: 或,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.5 【答案】D. 第卷(共110分)6 【答案】

10、A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.7 【答案】B【解析】解:依题设P在抛物线准线的投影为P,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|MF|=即有当M,P,F三点共线时,取

11、得最小值,为故选:B【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想8 【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式9 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键10【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0k,S=3,n

12、=1满足条件1k,S=7,n=2满足条件2k,S=13,n=3满足条件3k,S=23,n=4满足条件4k,S=41,n=5满足条件5k,S=75,n=6若使输出的结果S不大于50,则输入的整数k不满足条件5k,即k5,则输入的整数k的最大值为4故选:11【答案】D【解析】解:全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,MN=1,2,3,6,7,8,MN=3;IMIN=1,2,4,5,6,7,8;IMIN=2,7,8,故选:D12【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积可得,解得,

13、故选B二、填空题13【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为1914【答案】【解析】 ,所以增区间是15【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题16【答案】【解析】的展开式通项为,所以当时,常数项为.17【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=

14、c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键18【答案】 【解析】三、解答题19【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;

15、当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0,+)上单调递增,f(ak+1)f(ak),即得ak+2ak+10,由数学归纳法原理知,an+1an对于一切正整数n都成立,数列an为递增数列(2)由(1)知:当且仅当0a1a2,数列an为递增数列,f(a1)a1,即(a1为正整数),设(x1),则,

16、函数g(x)在区间上递增,由于,g(6)=ln60,又a1为正整数,首项a1的最小值为6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分如果多做,则按所做的前两题计分【选修4-2:矩阵与变换】20【答案】 【解析】解:当a=7时,|PM|+|PN|MN|=1410,因此坐标平面内不存在黄金直线;当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;当a=3时,|PM|+|PN|=106=|

17、MN|,黄金点的轨迹是个椭圆,正确;当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线故答案为:【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题21【答案】【解析】(1);(2).(1)由且,得,当时,得,3分故的对称轴,当时, 5分 解得,综上,实数的取值范围为;7分,13分且当,时,若,则恒成立,且当时,取到最大值的最大值为2.15分22【答案】(1);(2).【解析】试题分析:(1)当时,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为;(2)等价于,即在上恒成立,即.试题解析:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论