版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9/23/2020,常系数非齐次线性微分方程,第八节,一、,二、,9/23/2020,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,9/23/2020,一、, 为实数 ,设特解为,其中 为待定多项式 ,代入原方程 , 得,为 m 次多项式 .,(1) 若 不是特征方程的根,则取,从而得到特解,形式为,Q (x) 为 m 次待定系数多项式,9/23/2020,(2) 若 是特征方程的单根 ,为m 次多项式,故特解形式为,(3) 若 是特征方程的重根 ,是 m 次
2、多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程 .,即,即,当 是特征方程的 k 重根 时,可设,特解,9/23/2020,代入方程,即可确定系数:,从而确定特解.,特解的形式为,将,9/23/2020,提示,因为f(x)Pm(x)ex3x1 0不是特征方程的根 所以非齐次方程的特解应设为 y*b0 xb1 把它代入所给方程 得,例1 求微分方程y2y3y3x1的一个特解,解,齐次方程y2y3y0的特征方程为r22r30,b0 xb12b0 xb13b0 xb1,3b0 x2b03b1,2b03b0 x3b1,3b0 x2b03b13x1,提示,3b03 2b03b1
3、1,9/23/2020,例2 求微分方程y5y6yxe2x的通解,解,齐次方程y5y6y0的特征方程为r25r 60,其根为r12 r23,提示,齐次方程y5y6y0的通解为YC1e2xC2e3x ,因为f(x)Pm(x)exxe2x 2是特征方程的单根 所以非齐次方程的特解应设为 y*x(b0 xb1)e2x 把它代入所给方程 得,2b0 x2b0b1x,提示,2b01 2b0b10,因此所给方程的通解为,9/23/2020,二、,第二步 求出如下两个方程的特解,分析思路:,第一步将 f (x) 转化为,第三步 利用叠加原理求出原方程的特解,第四步 分析原方程特解的特点,9/23/2020,
4、第一步,利用欧拉公式将 f (x) 变形,9/23/2020,第二步 求如下两方程的特解,是特征方程的 k 重根 ( k = 0, 1),故,等式两边取共轭 :,为方程 的特解 .,设,则 有,特解:,9/23/2020,第三步 求原方程的特解,利用第二步的结果, 根据叠加原理, 原方程有特解 :,原方程,均为 m 次多项式 .,9/23/2020,第四步 分析,因,均为 m 次实,多项式 .,本质上为实函数 ,9/23/2020,小 结:,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根 ( k = 0, 1),上述结论也可推广到高阶方程的情形.,9/23/2020,例4.,的一个特
5、解 .,解: 本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数 , 得,于是求得一个特解,9/23/2020,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数, 得,因此特解为,代入方程:,所求通解为,为特征方程的单根 ,因此设非齐次方程特解为,9/23/2020,内容小结, 为特征方程的 k (0, 1, 2) 重根,则设特解为,为特征方程的 k (0, 1 )重根,则设特解为,3. 上述结论也可推广到高阶方程的情形.,9/23/2020,思考与练习,时可设特解为,时可设特解为,提示:,1 . (填空) 设,9/23/2020,2. 求微分方程,的通解 (其中,为实数 ) .,解: 特征方程,特征根:,对应齐次方程通解:,时,代入原方程得,故原方程通解为,时,代入原方程得,故原方程通解为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流运输高效承诺书范文5篇
- 厦门海沧实验幼儿园2025年顶岗教师招聘备考题库及答案详解(易错题)
- 2026年哈尔滨丁香人才周(秋季)平房区事业单位引才招聘备考题库完整答案详解
- VTE护理中的持续改进
- 其他特殊情况下的承诺书示例(4篇)
- 电子设备生产质量管控保证承诺书(7篇)
- 2026年佛山市第六中学招聘合同制道德与法治、地理教师备考题库及答案详解一套
- 2026年温岭市第五人民医院招聘备考题库有完整答案详解
- 2026年贵州医科大学附属乌当医院招聘合同制员工7人备考题库及答案详解(易错题)
- 2026年第六师五家渠市“百名硕士进六师”高层次人才引进备考题库有答案详解
- 2023年洛阳市洛龙区政务中心综合窗口人员招聘笔试题库及答案解析
- 山东省就业登记表
- GB/T 19867.1-2005电弧焊焊接工艺规程
- GB/T 16102-1995车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法
- GB/T 15171-1994软包装件密封性能试验方法
- 工程质量评价及用户评价表
- 医院转院证明样本图片(范文四篇)
- 外科护理学期末试卷3套18p
- 人员出车次数统计表
- 科傻软件使用说明书
- DB52∕T 1599-2021 高性能沥青路面(Superpave)施工技术规范
评论
0/150
提交评论