版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆 锥 曲 线,椭圆,双曲线,抛物线,定义,标准方程,几何性质,直线与圆锥曲线 的位置关系,若曲线C上的点与二元方程f ( x , y ) = 0的实数解 建立了如下关系: (1)曲线上点的坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线上的点 那么方程f ( x , y ) = 0叫做这条曲线C的方程,曲线C叫做 这个方程的曲线.,曲线与方程,第一步,设M (x0 , y0)是曲线C上任一点,证明(x0 , y0)是f (x , y) = 0的解;,证明已知曲线的方程的方法和步骤:,第二步,设(x0 , y0)是f (x , y) = 0的解,证明点M(x0 , y0)在曲线C上
2、.,如果曲线C的方程是f ( x , y ) = 0,那么点,在曲线C上的充要条件 .,是,曲线与方程,求曲线(轨迹)方程的步骤,椭圆的定义:,结论:若常数大于|F1F2|,则点M的轨迹是椭圆; 若常数等于|F1F2|,则点M的轨迹是线段F1F2; 若常数小于|F1F2|,则点M的轨迹不存在。,平面内与两个定点F1,F2的距离之和等于常数(大于 )的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.,|MF1|+ |MF2| = 2a, 两个定点F1、F2双曲线的焦点;, |F1F2|=2c 焦距.,(1)2a2c ;,平面内与两个定点F1,F2的距离的差的绝对值等于
3、常数(小于F1F2)的点的轨迹叫做双曲线.,(2)2a 0 .,双曲线的定义,思考:,(1)若2a=2c,则轨迹是什么?,(2)若2a2c,则轨迹是什么?,说明,(3)若2a=0,则轨迹是什么?,| |MF1| - |MF2| | = 2a,(1)两条射线,(2)不表示任何轨迹,(3)线段F1F2的垂直平分线,平面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线。,定点F:叫做抛物线的焦点。 定直线l:叫做抛物线的准线。,l,F,M,N,注意:定点F在定直线l外,抛物线的定义,圆锥曲线的统一定义:,关于x轴、y轴成轴对称;关于原点成中心对称。,长半轴长为a,短半轴长为b.,焦距为2
4、c;,a2=b2+c2,(0e1),关于x轴、y轴、原点对称,图形,方程,范围,对称性,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c) F1(0,-c),顶点,抛物线的几何性质,y2 = 2px (p0),y2 = -2px (p0),x2 = 2py (p0),x2 = -2py (p0),x0 yR,x0 yR,y0 xR,y 0 xR,(0,0),x轴,y轴,1,基础训练,基础训练,4,(0,-1),基础训练,小结:要熟练掌握圆锥曲线的基础知识,以解决基本问题。,直线与圆锥曲线的位置关系,直线与椭圆的位置关系
5、,种类:,相离(没有交点),相切(一个交点),相交(二个交点),相离(没有交点) 相切(一个交点) 相交(二个交点),直线与椭圆的位置关系的判定,代数方法,一、直线与双曲线位置关系(从“形”角度研究), 相交,相切,相离,有两个公共点,有一个公共点,只有一个公共点,没有公共点,在同一支,分别在两支,直线与渐近线平行,注意:直线与双曲线只有一个公共点,情况有两种,与椭圆不同。,位置关系与交点个数,相离:0个交点,或一个交点,相交:两个交点,相切:一个交点,(b2-a2k2)x2-2kma2x+a2(m2+b2)=0,1.二次项系数为0时,L与双曲线的渐近线平行或重合。 重合:无交点;平行:有一个
6、交点。,2.二次项系数不为0时,上式为一元二次方程,直线与双曲线位置关系(从“数”角度研究),直线与双曲线的位置关系及判断,(1)直线与双曲线相交,(2)直线与双曲线相切,(3)直线与双曲线相离,a.有两个公共点: 方程有两个不同的根0,b.有一个公共点,直线与渐近线平行 方程二次项系数为0, 退化为一次方程,只有一个公共点方程有两个等根=0,没有公共点:方程没有实根0,一、直线与抛物线位置关系种类,1、相离;2、相切;3、相交(一个交点, 两个交点),与双曲线的情况一样,判断直线与抛物线位置关系的操作程序,把直线方程代入抛物线方程,得到一元一次方程,得到一元二次方程,直线与抛物线的 对称轴平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025山东日照市五莲县教体系统招聘博士研究生2人备考题库及1套完整答案详解
- 2025渤海银行总行党委办公室、办公室(合署)招聘备考题库及参考答案详解
- 2025年漯河市人力资源和社会保障局所属事业单位人才引进1名备考题库及答案详解(新)
- 2025重庆两江新区人才发展集团某项目外包员工招聘1人备考题库及答案详解(考点梳理)
- 2026浙江宁波市镇开九龙康养有限公司编外人员招聘1人备考题库参考答案详解
- 2026广东深圳南山区朗麓家园第一幼儿园招聘1人备考题库含答案详解
- 2025年陕西师范大学吴堡实验学校教师招聘备考题库含答案详解
- 2025河南信阳市潢川县妇女联合会招聘2名全日制公益性岗位备考题库带答案详解
- 2025云南建投第一建设有限公司社会招聘1人备考题库及答案详解参考
- 2025湖北武汉21世纪经济报道招聘实习记者2人备考题库及一套参考答案详解
- 污水管道土方量-计算表-绝对-
- 化学选修四原电池课件
- 中华民族的三次融合
- 2026届湖南省长沙市一中化学高一第一学期期末检测试题含解析
- 医疗护理文书的书写和管理
- 2025年安防生产行业技能考试-安全防范系统安装维护员历年参考题库含答案解析(5套共100道单选合辑)
- 屠宰场绩效考核管理办法
- 寄居蟹课件介绍
- 专业分包的试验与检验管理
- 少有人走的路读书分享课件
- 非标设备项目管理制度
评论
0/150
提交评论