2019届高考数学复习解析几何9.8直线与圆锥曲线课件文新人教B版.pptx_第1页
2019届高考数学复习解析几何9.8直线与圆锥曲线课件文新人教B版.pptx_第2页
2019届高考数学复习解析几何9.8直线与圆锥曲线课件文新人教B版.pptx_第3页
2019届高考数学复习解析几何9.8直线与圆锥曲线课件文新人教B版.pptx_第4页
2019届高考数学复习解析几何9.8直线与圆锥曲线课件文新人教B版.pptx_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、9.8直线与圆锥曲线,-2-,知识梳理,双基自测,2,3,4,1,自测点评,1.直线与圆锥曲线的位置关系 (1)从几何角度看,可分为三类:没有公共点,仅有一个公共点及有两个不同的公共点. (2)从代数角度看,可通过将表示直线的方程代入圆锥曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0.,-3-,知识梳理,双基自测,2,3,4,1,自测点评,如消去y后得ax2+bx+c=0. 若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合). 若a0,设=b2-4ac. 当0

2、时,直线和圆锥曲线相交于不同的两点; 当0时,直线和圆锥曲线相切于一点; 当0时,直线和圆锥曲线没有公共点.,=,-4-,知识梳理,双基自测,自测点评,2,3,4,1,2.直线与圆锥曲线相交时的弦长问题 (1)斜率为k(k不为0)的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=或 |P1P2|=. (2)当斜率k不存在时,可求出交点的坐标,直接运算(利用两点间的距离公式).,-5-,知识梳理,双基自测,自测点评,2,3,4,1,-6-,知识梳理,双基自测,自测点评,2,3,4,1,4.常用结论 (1)过椭圆外一点总有两条直线与椭圆相切. (2)过椭圆上一

3、点有且仅有一条直线与椭圆相切. (3)过椭圆内一点的直线均与椭圆相交. (4)过双曲线外不在渐近线上一点总有四条直线与双曲线有且只有一个交点,分别是两条切线和两条与渐近线平行的直线. (5)过双曲线上一点总有三条直线与双曲线有且只有一个交点,分别是一条切线和两条与渐近线平行的直线. (6)过双曲线内一点总有两条直线与双曲线有且只有一个交点,分别是两条与渐近线平行的直线.,-7-,知识梳理,双基自测,自测点评,2,3,4,1,(7)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,分别是两条切线和一条与对称轴平行或重合的直线. (8)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,分别

4、是一条切线和一条与对称轴平行或重合的直线. (9)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,该直线是一条与对称轴平行或重合的直线.,2,-8-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”. (1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.() (2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.() (3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.() (4)若直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长 () (5)若抛物线C上存在关于直线l

5、对称的两点,则需满足直线l与抛物线C的方程联立消元得到的一元二次方程的判别式0.(),答案,-9-,知识梳理,双基自测,自测点评,2,3,4,1,5,2.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有() A.1条B.2条C.3条D.4条,答案,解析,-10-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-11-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-12-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-13-,知识梳理,双基自测,自测点评,1.使用弦长公式时要注意直线的斜率情况,对于斜率不存在的直线要单独

6、处理,对于抛物线中的过焦点的弦要使用其特定的公式. 2.直线与双曲线或与抛物线的交点问题比直线与椭圆的交点问题更为复杂,除了利用方程,还可以结合图象分析.,-14-,考点1,考点2,考点3,考点4,思考如何灵活应用直线与圆锥曲线位置关系?,-15-,考点1,考点2,考点3,考点4,-16-,考点1,考点2,考点3,考点4,-17-,考点1,考点2,考点3,考点4,-18-,考点1,考点2,考点3,考点4,解题心得直线与圆锥曲线位置关系的判断方法: 用直线方程与圆锥曲线方程组成的方程组的解的个数,可以研究直线与圆锥曲线的位置关系,即用代数法研究几何问题,这是解析几何的重要思想方法.直线与圆锥曲线

7、有无公共点或有几个公共点问题,实际上是研究方程组解的个数问题.,-19-,考点1,考点2,考点3,考点4,对点训练1(2017湖南长沙一模)已知过点A(0,2)的动圆恒与x轴相切,设切点为B,AC是该圆的直径. (1)求点C的轨迹E的方程; (2)当AC不在坐标轴上时,设直线AC与曲线E交于另一点P,该曲线在点P处的切线与直线BC交于点Q,求证:PQC恒为直角三角形.,-20-,考点1,考点2,考点3,考点4,-21-,考点1,考点2,考点3,考点4,-22-,考点1,考点2,考点3,考点4,思考如何求圆锥曲线的弦长?,-23-,考点1,考点2,考点3,考点4,-24-,考点1,考点2,考点3

8、,考点4,-25-,考点1,考点2,考点3,考点4,考向二中点弦问题 思考解中点弦问题常用的求解方法是什么?,-26-,考点1,考点2,考点3,考点4,-27-,考点1,考点2,考点3,考点4,解题心得1.求弦长的方法及特殊情况: (1)求弦长时可利用弦长公式,首先根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解. (2)注意两种特殊情况:直线与圆锥曲线的对称轴平行或垂直;直线过圆锥曲线的焦点.,-28-,考点1,考点2,考点3,考点4,2.处理中点弦问题常用的求解方法: (1)点差法:即设出弦的两端点的坐标

9、后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2, 三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率. (2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.,-29-,考点1,考点2,考点3,考点4,对点训练2(1)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C. 求C的方程; l是与圆P、圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.,解: (1)由已知得圆M的圆心为M(-1,0),半径r1=1.圆N的

10、圆心为N(1,0),半径r2=3. 设圆P的圆心为P(x,y),半径为R. 因为圆P与圆M外切并且与圆N内切, 所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4. 由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为,-30-,考点1,考点2,考点3,考点4,-31-,考点1,考点2,考点3,考点4,-32-,考点1,考点2,考点3,考点4,-33-,考点1,考点2,考点3,考点4,-34-,考点1,考点2,考点3,考点4,考向一定点问题 (1)求椭圆C的方程; (2)设椭圆C的左、右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一交点为M

11、,直线PB与椭圆的另一交点为N.求证:直线MN经过一定点. 思考如何解决直线过定点问题?,-35-,考点1,考点2,考点3,考点4,-36-,考点1,考点2,考点3,考点4,-37-,考点1,考点2,考点3,考点4,-38-,考点1,考点2,考点3,考点4,考向二定值问题 例5 如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点). (1)证明:动点D在定直线上; (2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2-|MN1|2为定值,并求此定值

12、. 思考求圆锥曲线中定值问题常见的方法有哪些?,-39-,考点1,考点2,考点3,考点4,证明 (1)依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2), 即x2-4kx-8=0. 设A(x1,y1),B(x2,y2),则有x1x2=-8, 因此动点D在定直线y=-2(x0)上.,-40-,考点1,考点2,考点3,考点4,(2)依题设,切线l的斜率存在且不等于0,设切线l的方程为y=ax+b(a0),代入x2=4y得x2=4(ax+b),即x2-4ax-4b=0, 由=0得(4a)2+16b=0,化简整理得b=-a2. 故切线l的方程可写为y=ax-a2. 即|MN

13、2|2-|MN1|2为定值8.,-41-,考点1,考点2,考点3,考点4,解题心得1.求定值问题常见的两种方法 (1)先从特殊情况入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题 (1)探索直线过定点时,可先设出直线方程为y=kx+b,再利用条件建立b,k的等量关系进行消元,借助于直线系的思想找出定点. (2)从特殊情况入手,先探求定点,再证明与变量无关.,-42-,考点1,考点2,考点3,考点4,对点训练3(1)已知抛物线C:y2=2px(p0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两

14、点. 求抛物线C的方程; 若直线OA,OB的斜率之积为 ,求证:直线AB过x轴上一定点.,(2)已知F1,F2为椭圆C: (ab0)的左、右焦点,过椭圆右焦点F2且斜率为k(k0)的直线l与椭圆C相交于E,F两点,EFF1的周长为8,且椭圆C与圆x2+y2=3相切. 求椭圆C的方程; 设A为椭圆的右顶点,直线AE,AF分别交直线x=4于点M,N,线段MN的中点为P,记直线PF2的斜率为k,求证:kk为定值.,-43-,考点1,考点2,考点3,考点4,-44-,考点1,考点2,考点3,考点4,-45-,考点1,考点2,考点3,考点4,-46-,考点1,考点2,考点3,考点4,-47-,考点1,考

15、点2,考点3,考点4,-48-,考点1,考点2,考点3,考点4,例6 (1)求直线AP斜率的取值范围; (2)求|PA|PQ|的最大值. 思考圆锥曲线中最值问题的解法有哪些?,-49-,考点1,考点2,考点3,考点4,-50-,考点1,考点2,考点3,考点4,-51-,考点1,考点2,考点3,考点4,解题心得圆锥曲线中常见的最值问题及其解法 (1)两类最值问题:涉及距离、面积的最值以及与之相关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题. (2)两种常见解法:几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;代数法,若题目

16、的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用均值不等式法、配方法及导数法求解.,-52-,考点1,考点2,考点3,考点4,对点训练4 如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p0). (1)若直线l过抛物线C的焦点,求抛物线C的方程; (2)已知抛物线C上存在关于直线l对称的相异两点P和Q. 求证:线段PQ的中点坐标为(2-p,-p); 求p的取值范围.,-53-,考点1,考点2,考点3,考点4,-54-,考点1,考点2,考点3,考点4,-55-,考点1,考点2,考点3,考点4,1.涉及直线与圆锥曲线的位置关系的判断有两种方法: (1)代数法,即联立直线与圆锥曲线的方程,组成方程组,通过方程组的解的情况来解决; (2)几何法,即利用数形结合思想并找出关键点或关键线.,-56-,考点1,考点2,考点3,考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论