




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,要解决的问题:,具有奇偶性的函数有什么特点?奇、偶函数的图像有什么特征? 判定函数的奇偶性有哪些步骤? 每一个函数都具有奇偶性吗? 是否存在既是奇函数又是偶函数的函数?,2.1.4函数的奇偶性,观察下图,思考并讨论以下问题:,(1) 这两个函数图象有什么共同特征吗? (2) 相应的两个函数值对应表是如何体现这些特征的?,f(-3)=9=f(3) f(-2)=4=f(2) f(-1)=1=f(1),f(-3)=3=f(3) f(-2)=2=f(2) f(-1)=1=f(1),实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.,1偶函数,一
2、般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数,例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.,2.函数y=x2(-1x2)是偶函数吗?从图像的角度也来解释一下. 3.函数f(x)=x3-x+1.因为f(-1)=f(1) 所以f(x) 为偶函数. 对吗? 从这两个例子你得到什么启示?,辩一辩 1.偶函数的图像有什么特征?能从代数的角度说明一下吗?,观察函数f(x)=x和f(x)=1/x的图象(下图),你能发现两个函数图象有什么共同特征吗?,f(-3)=-3=-f(3) f(-2)=-2=-f(2) f(-1)=-1=-f(1),
3、实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时我们称函数y=x为奇函数.,f(-3)=-1/3=-f(3) f(-2)=-1/2=-f(2) f(-1)=-1=-f(1),2奇函数,一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)= f(x),那么f(x)就叫做奇函数,注意:,1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;,2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称),3、奇、偶函数定义的逆命题也成立,即 若f(x)为奇函数,则f(-x
4、)=-f(x)有成立. 若f(x)为偶函数,则f(-x)=f(x)有成立.,4、如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.,判断下列函数是否具有奇偶性:,具有奇偶性的函数, 其定义域在数轴上有怎样的特点?,函数定义域关于数“0”对称.,对于定义在R上的函数 f (x), 下列判断是否正确?,若f (2) = f (2),则函数 f (x)是偶函数 若f (2) = f (2),则函数 f (x)是奇函数,若f (2) f (2),则函数 f (x)不是偶函数 若f (2) f (2),则函数 f (x)不是奇函数。,用定义判断函数奇偶性的步骤:,(1)、先求定义
5、域,看是否关于原点对称;,(2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.,例1、判断下列函数的奇偶性:,(1)解:定义域为R f(-x)=(-x)4=f(x),即f(-x)=f(x),f(x)偶函数,(2)解:定义域为R f(-x)=(-x)5=- x5 =-f(x),即f(-x)=-f(x),f(x)奇函数,(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x),即f(-x)=-f(x),f(x)奇函数,(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x),即f(-x)=f(x),f(x)偶函数,课堂练习,判断下列函数的奇偶性:,函数,奇函
6、数,偶函数,既是奇函数又是偶函数,非奇非偶的函数,3.奇偶函数图象的性质,1、奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.,2、偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.,说明:奇偶函数图象的性质可用于: a、简化函数图象的画法. B、判断函数的奇偶性,奇函数的图象(如y=x3 ),偶函数的图象(如y=x2),o,a,P/(-a ,f(-a),p(a ,f(a),-a,(-a,-f(a),(-a,f(a),例2、已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象.,解:画法略,思考:(1)若奇函数在(0,+)上是增函数? 那么该函数在(-,0)上是增函数还是减函数? (2)若是偶函数又有怎样的情形呢?,奇函数单调性同,偶函数单调性反,本课小结,1、两个定义:对于f(x)定义域内的任意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国民航大学《公路施工技术与管理》2023-2024学年第二学期期末试卷
- 定西职业技术学院《司法文书写作与法律文献检索》2023-2024学年第二学期期末试卷
- 北京经贸职业学院《专业考察(设计公司、实训基地)》2023-2024学年第二学期期末试卷
- 贵州应用技术职业学院《油气成藏理论》2023-2024学年第二学期期末试卷
- 湖南工业职业技术学院《信息与计算科学专业导论》2023-2024学年第二学期期末试卷
- 植物景观设计考察专题研究
- 天津科技大学《财务会计二》2023-2024学年第二学期期末试卷
- 威海海洋职业学院《给排水概论》2023-2024学年第二学期期末试卷
- 昆明医科大学海源学院《电子商务管理实务》2023-2024学年第二学期期末试卷
- 重庆电子工程职业学院《临床医学整合案例》2023-2024学年第二学期期末试卷
- 投资合同:有限公司投资协议
- 四川大学华西口腔医院临床研究医学伦理审查申请表【模板】
- 锅炉安装改造维修质量保证体系文件(手册+程序文件+表格+工艺文件汇编)-符合TSG 07-2019特种设备质量保证管理体系
- 急性呼吸窘迫综合征-课件
- 2024版兼职主播合作协议书
- 拖欠房租通知书范文
- 年产万吨的氯乙烯合成工段的工艺设计
- 2024年湖北省中考历史试卷附答案
- 燃气经营安全重大隐患判定标准课件
- 民法典之合同篇课件
- 2024年福建省莆田市初中八年级教学质量检测生物试卷
评论
0/150
提交评论