版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、空间向量及其运算,复习回顾: 平面向量,1、定义:,既有大小又有方向的量。,2、平面向量的加法、减法与数乘运算,向量加法的三角形法则,3、平面向量的加法、减法与数乘运算律,推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。,F3,F3=15N,已知F1=10N,F2=15N,,F1,F2,这三个力两两之间的夹角都为90度,它们的合力的大小为多少N?,这需要进一步来认识空间中的向量,起点,终点,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:
2、三角形法则或 平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,O,A,B,C,空间向量的数乘,空间向量的加减法,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。,思考:它们确定的平面是否唯一?,思考:空间任意两个向量是否可能异面?,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量及其加减与数乘运算,
3、空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,加法:三角形法则或 平行四边形法则,减法:三角形法则,数乘:ka,k为正数,负数,零,加法结合律,成立吗?,O,A,B,C,O,A,B,C,(空间向量),向量加法结合律:,空间中,推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量,具有大小和方向的量,数乘:
4、ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,小结,类比思想 数形结合思想,数乘:ka,k为正数,负数,零,例如:,定义:,我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运算,其运算律是否也与平面向量完全相同呢?,显然,空间向量的数乘运算满足分配律及结合律,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图),G,M,始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量,F1,F2,F1=10N,F2=15N,F3=15N,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,例2:已知平行六面体ABCD-A1B1C1D1, 求满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保洁服务质量评估与满意度调研
- 2025吉林通化县供销联社招聘1人备考笔试试题及答案解析
- XZ系列旋片真空泵使用及维护指南
- 2025年12月深圳市公办中小学面向2026年应届毕业生招聘教师888人模拟笔试试题及答案解析
- 新学期小学五年级教学工作安排
- 赣州市人力资源有限公司招聘劳务外派工作人员模拟笔试试题及答案解析
- 企业岗位责任制与员工考核标准
- 2025重庆联交所集团所属单位招聘1人备考考试题库及答案解析
- 人力资源管理制度及员工晋升方案
- 2025济南市市中区残联公开招聘派遣制残疾人工作“一专两员”招聘(2人)模拟笔试试题及答案解析
- 附表:医疗美容主诊医师申请表
- 跌落式熔断器熔丝故障原因分析
- 2023年全市中职学校学生职业技能大赛
- 毕节市织金县化起镇污水处理工程环评报告
- 河流动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 仓库安全管理检查表
- 岭南版美术科五年级上册期末素质检测试题附答案
- 以执业医师考试为导向的儿科学临床实习教学改革
- 一年级上册美术测试题
- 人口结构演变对人身保险需求的影响分析
- 质量检测见证取样送检监理实施细则
评论
0/150
提交评论