广东中考数学第23题集_第1页
广东中考数学第23题集_第2页
广东中考数学第23题集_第3页
广东中考数学第23题集_第4页
广东中考数学第23题集_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、广东中考数学第23题集1(2018广东)如图,已知顶点为C(0,3)的抛物线y=ax2+b(a0)与x轴交于A,B两点,直线y=x+m过顶点C和点B(1)求m的值;(2)求函数y=ax2+b(a0)的解析式;(3)抛物线上是否存在点M,使得MCB=15?若存在,求出点M的坐标;若不存在,请说明理由2(2017广东)如图,在平面直角坐标系中,抛物线y=x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C(1)求抛物线y=x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sinOCB的值3(2

2、016广东)如图,在直角坐标系中,直线y=kx+1(k0)与双曲线y=(x0)相交于点P(1,m )(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( );(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程4(2015广东)如图,反比例函数y=(k0,x0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作ABx轴于点B,交反比例函数图象于点D,且AB=3BD(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标5(2015广州)如图1,关于x的

3、二次函数y=x2+bx+c经过点A(3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC=3SEBC?若存在求出点F的坐标,若不存在请说明理由6(2016深圳)已知O为坐标原点,抛物线y1=ax2+bx+c(a0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x20,|x1|+|x2|=4,点A,C在直线y2=3x+t上(1)求点C的坐标;(2)当

4、y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n25n的最小值7(2018广州)如图,抛物线y=ax2+2x3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分APB时,求点P的坐标;(3)如图2,已知直线y=x分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE问:以QD为腰的等

5、腰QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由8(2017深圳)已知抛物线y=mx2+(12m)x+13m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当m8时,由(2)求出的点P和点A,B构成的ABP的面积是否有最值?若有,求出该最值及相对应的m值9(2017广州)如图,抛物线y=ax2+bx+2经过点A(1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使SABC=SABD?若存在请直接给出点D坐标;若不存在请说明

6、理由;(3)将直线BC绕点B顺时针旋转45,与抛物线交于另一点E,求BE的长10(2018深圳)已知抛物线y1=x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(1,5),点A与y1的顶点B的距离是4(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式11(2018广州)已知顶点为A抛物线经过点,点(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPM=MAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直

7、线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN1,若点N1落在x轴上,请直接写出Q点的坐标12已知抛物线y=x2+mx2m4(m0)(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在P上试判断:不论m取任何正数,P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;若点C关于直线x=的对称点为点E,点D(0,1),连接BE,BD,DE,BDE的周长记为l,P的半径记为r,求的值广东中考数学第23题集参考答案与试题解析一解答题(共12小题)1如图,已知顶点为C(0,3

8、)的抛物线y=ax2+b(a0)与x轴交于A,B两点,直线y=x+m过顶点C和点B(1)求m的值;(2)求函数y=ax2+b(a0)的解析式;(3)抛物线上是否存在点M,使得MCB=15?若存在,求出点M的坐标;若不存在,请说明理由【分析】(1)把C(0,3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可【解答】解:(1)将(0,3)代入y=x+m,可得:m=3;(2)将y=0代入y=x3得:x=3,所以点B的坐标为(3,0),将(0,3)、(3,0)代入y=ax2+b中,可得:,解得

9、:,所以二次函数的解析式为:y=x23;(3)存在,分以下两种情况:若M在B上方,设MC交x轴于点D,则ODC=45+15=60,OD=OCtan30=,设DC为y=kx3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);若M在B下方,设MC交x轴于点E,则OEC=45+15=60,OE=OCtan60=3,设EC为y=kx3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,2),综上所述M的坐标为(3,6)或(,2)【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键2如图,在平面直

10、角坐标系中,抛物线y=x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C(1)求抛物线y=x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sinOCB的值【分析】(1)将点A、B代入抛物线y=x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sinOCB=可得结果【解答】解:(1)将点A、B代入抛物线y=x2+ax+b可得,解得,a=

11、4,b=3,抛物线的解析式为:y=x2+4x3;(2)点C在y轴上,所以C点横坐标x=0,点P是线段BC的中点,点P横坐标xP=,点P在抛物线y=x2+4x3上,yP=3=,点P的坐标为(,);(3)点P的坐标为(,),点P是线段BC的中点,点C的纵坐标为20=,点C的坐标为(0,),BC=,sinOCB=【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键3如图,在直角坐标系中,直线y=kx+1(k0)与双曲线y=(x0)相交于点P(1,m )(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q(2,1);(3)若过P、

12、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程【分析】(1)直接利用图象上点的坐标性质进而代入求出即可;(2)连接PO,QO,PQ,作PAy轴于A,QBx轴于B,于是得到PA=1,OA=2,根据点Q与点P关于直线y=x成轴对称,得到直线y=x垂直平分PQ,根据线段垂直平分线的性质得到OP=OQ,根据全等三角形的性质得到QB=PA=1,OB=OA=2,于是得到结论;(3)设抛物线的函数解析式为y=ax2+bx+c,把P、Q、N(0,)代入y=ax2+bx+c,解方程组即可得到结论【解答】解:(1)直线y=kx+1与双曲线y=(x0)交于点A(1,m),m

13、=2,把A(1,2)代入y=kx+1得:k+1=2,解得:k=1;(2)连接PO,QO,PQ,作PAy轴于A,QBx轴于B,则PA=1,OA=2,点Q与点P关于直线y=x成轴对称,直线y=x垂直平分PQ,OP=OQ,POA=QOB,在OPA与OQB中,POAQOB,QB=PA=1,OB=OA=2,Q(2,1);故答案为:2,1;(3)设抛物线的函数解析式为y=ax2+bx+c,过P、Q二点的抛物线与y轴的交点为N(0,),解得:,抛物线的函数解析式为y=x2+x+,对称轴方程x=【点评】本题考查了一次函数和反比例函数的交点问题,全等三角形的判定和性质,解题需把点的坐标代入函数解析式,灵活利用方

14、程组求出所需字母的值,从而求出函数解析式,熟练掌握待定系数法求函数的解析式是解题的关键4如图,反比例函数y=(k0,x0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作ABx轴于点B,交反比例函数图象于点D,且AB=3BD(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标【分析】(1)根据A坐标,以及AB=3BD求出D坐标,代入反比例解析式求出k的值;(2)直线y=3x与反比例解析式联立方程组即可求出点C坐标;(3)作C关于y轴的对称点C,连接CD交y轴于M,则d=MC+MD最小,得到C(,),求得直线CD的解析式

15、为y=x+1+,直线与y轴的交点即为所求【解答】解:(1)A(1,3),AB=3,OB=1,AB=3BD,BD=1,D(1,1)将D坐标代入反比例解析式得:k=1;(2)由(1)知,k=1,反比例函数的解析式为;y=,解:,解得:或,x0,C(,);(3)如图,作C关于y轴的对称点C,连接CD交y轴于M,则d=MC+MD最小,C(,),设直线CD的解析式为:y=kx+b,y=(32)x+22,当x=0时,y=22,M(0,22)【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,以及直线与反比例的交点求法,熟练掌握待定系数法是解本题的关键5

16、如图1,关于x的二次函数y=x2+bx+c经过点A(3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC=3SEBC?若存在求出点F的坐标,若不存在请说明理由【分析】(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在DAB的平分线上时,过P作PMAD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在DAB外角平分线上时,同理可

17、求得P点坐标;(3)可先求得FBC的面积,过F作FQx轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标【解答】解:(1)二次函数y=x2+bx+c经过点A(3,0),点C(0,3),解得,抛物线的解析式y=x22x+3,(2)存在,当P在DAB的平分线上时,如图1,作PMAD,设P(1,m),则PM=PDsinADE=(4m),PE=m,PM=PE,(4m)=m,m=1,P点坐标为(1,1);当P在DAB的外角平分线上时,如图2,作PNAD,设P(1,n),则PN=PDsinADE=(4n),PE=n,PN=PE,(4n)=n,n=1

18、,P点坐标为(1,1);综上可知存在满足条件的P点,其坐标为(1,1)或(1,1);(3)抛物线的解析式y=x22x+3,B(1,0),SEBC=EBOC=3,2SFBC=3SEBC,SFBC=,过F作FQx轴于点H,交BC的延长线于Q,过F作FMy轴于点M,如图3,SFBC=SBQHSBFHSCFQ=HBHQBHHFQFFM=BH(HQHF)QFFM=BHQFQFFM=QF(BHFM)=FQOB=FQ=,FQ=9,BC的解析式为y=3x+3,设F(x0,x022x0+3),3x0+3+x02+2x03=9,解得:x0=或(舍去),点F的坐标是(,),SABC=6,点F不可能在A点下方,综上可

19、知F点的坐标为(,)【点评】本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键本题所考查知识点较多,综合性很强,难度适中6已知O为坐标原点,抛物线y1=ax2+bx+c(a0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x20,|x1|+|x2|=4,点A,C在直线y2=3x+t上(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线

20、y1向左平移n(n0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n25n的最小值【分析】(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用若C(0,3),即c=3,以及若C(0,3),即c=3,得出A,B点坐标,进而求出函数解析式,进而得出答案;(3)利用若c=3,则y1=x22x+3=(x+1)2+4,y2=3x+3,得出y1向左平移n个单位后,则解析式为:y3=(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,若c=3,则y1=x22x3=(x1)24,y

21、2=3x3,y1向左平移n个单位后,则解析式为:y3=(x1+n)24,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值【解答】解:(1)令x=0,则y=c,故C(0,c),OC的距离为3,|c|=3,即c=3,C(0,3)或(0,3);(2)x1x20,x1,x2异号,若C(0,3),即c=3,把C(0,3)代入y2=3x+t,则0+t=3,即t=3,y2=3x+3,把A(x1,0)代入y2=3x+3,则3x1+3=0,即x1=1,A(1,0),x1,x2异号,x1=10,x20,|x1|+|x2|=4,1x2=4,解得:x2=3,则B(3,0),代入y1=ax

22、2+bx+3得,解得:,y1=x22x+3=(x+1)2+4,则当x1时,y随x增大而增大若C(0,3),即c=3,把C(0,3)代入y2=3x+t,则0+t=3,即t=3,y2=3x3,把A(x1,0),代入y2=3x3,则3x13=0,即x1=1,A(1,0),x1,x2异号,x1=10,x20|x1|+|x2|=4,1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx3得,解得:,y1=x22x3=(x1)24,则当x1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x1;若c=3,当y随x增大而增大时,x1;(3)若c=3,则y1=x22x+3=(x+1

23、)2+4,y2=3x+3,y1向左平移n个单位后,则解析式为:y3=(x+1+n)2+4,则当x1n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=3x+3n,要使平移后直线与P有公共点,则当x=1n,y3y4,即(1n+1+n)2+43(1n)+3n,解得:n1,n0,n1不符合条件,应舍去;若c=3,则y1=x22x3=(x1)24,y2=3x3,y1向左平移n个单位后,则解析式为:y3=(x1+n)24,则当x1n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=3x3n,要使平移后直线与P有公共点,则当x=1n,y3y4,即(1n1+n)243(1n)3n

24、,解得:n1,综上所述:n1,2n25n=2(n)2,当n=时,2n25n的最小值为:【点评】此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n的取值范围是解题关键7如图,抛物线y=ax2+2x3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分APB时,求点P的坐标;(3)如图2,已知直线y=x分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE问:以QD为腰的等腰QDE的面积是否存在

25、最大值?若存在,请求出这个最大值;若不存在,请说明理由【分析】(1)把B点坐标代入抛物线解析式可求得a的值,可求得抛物线解析式,再令y=0,可解得相应方程的根,可求得A点坐标;(2)当点P在x轴上方时,连接AP交y轴于点B,可证OBPOBP,可求得B坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得BPO=BPO,又BPO在APO的内部,可知此时没有满足条件的点P;(3)过Q作QHDE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tanQDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的

26、长表示出QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得QDE的面积的最大值【解答】解:(1)把B(1,0)代入y=ax2+2x3,可得a+23=0,解得a=1,抛物线解析式为y=x2+2x3,令y=0,可得x2+2x3=0,解得x=1或x=3,A点坐标为(3,0);(2)若y=x平分APB,则APO=BPO,如图1,若P点在x轴上方,PA与y轴交于点B,由于点P在直线y=x上,可知POB=POB=45,在BPO和BPO中,BPOBPO(ASA),BO=BO=1,设直线AP解析式为y=kx+b,把A、B两点坐标代入可得,解得,直线AP解析式为y=x+1,联立,解得,P点坐标为(,);若

27、P点在x轴下方时,同理可得BOPBOP,BPO=BPO,又BPO在APO的内部,APOBPO,即此时没有满足条件的P点,综上可知P点坐标为(,);(3)如图2,作QHCF,交CF于点H,CF为y=x,可求得C(,0),F(0,),tanOFC=,DQy轴,QDH=MFD=OFC,tanHDQ=,不妨设DQ=t,DH=t,HQ=t,QDE是以DQ为腰的等腰三角形,若DQ=DE,则SDEQ=DEHQ=tt=t2,若DQ=QE,则SDEQ=DEHQ=2DHHQ=tt=t2,t2t2,当DQ=QE时DEQ的面积比DQ=DE时大设Q点坐标为(x,x2+2x3),则D(x,x),Q点在直线CF的下方,DQ

28、=t=x(x2+2x3)=x2x+,当x=时,tmax=3,(SDEQ)max=t2=,即以QD为腰的等腰三角形的面积最大值为【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、角平分线的定义、全等三角形的判定和性质、三角形的面积、等腰三角形的性质、二次函数的性质及分类讨论等在(2)中确定出直线AP的解析式是解题的关键,在(3)中利用DQ表示出QDE的面积是解题的关键本题考查知识点较多,综合性较强,计算量大,难度较大8已知抛物线y=mx2+(12m)x+13m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当m

29、8时,由(2)求出的点P和点A,B构成的ABP的面积是否有最值?若有,求出该最值及相对应的m值【分析】(1)根据题意得出=(12m)24m(13m)=(14m)20,得出14m0,解不等式即可;(2)y=m(x22x3)+x+1,故只要x22x3=0,那么y的值便与m无关,解得x=3或x=1(舍去,此时y=0,在坐标轴上),故定点为(3,4);(3)由|AB|=|xAxB|得出|AB|=|4|,由已知条件得出4,得出0|4|,因此|AB|最大时,|=,解方程得出m=8,或m=(舍去),即可得出结果【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m0时,抛物线y=mx2+(12

30、m)x+13m与x轴相交于不同的两点A、B,=(12m)24m(13m)=(14m)20,14m0,m,m的取值范围为m0且m;(2)证明:抛物线y=mx2+(12m)x+13m,y=m(x22x3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x22x3=0时,y与m无关,解得:x=3或x=1,当x=3时,y=4,定点坐标为(3,4);当x=1时,y=0,定点坐标为(1,0),P不在坐标轴上,P(3,4);(3)解:|AB|=|xAxB|=|=|4|,m8,4,40,0|4|,|AB|最大时,|=,解得:m=8,或m=(舍去),当m=8时,|AB|有最大值,此时ABP的面积最大,没有最

31、小值,则面积最大为:|AB|yP=4=【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键9如图,抛物线y=ax2+bx+2经过点A(1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使SABC=SABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45,与抛物线交于另一点E,求BE的长【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求

32、得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BCAC,设直线AC和BE交于点F,过F作FMx轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长【解答】解:(1)抛物线y=ax2+bx+2经过点A(1,0),B(4,0),解得,抛物线解析式为y=x2+x+2;(2)由题意可知C(0,2),A(1,0),B(4,0),AB=5,OC=2,SABC=ABOC=52=5,SABC=SABD,SABD=5=,设D(x,y),AB|y|=5|y|=,解得|y|=3,当y=3

33、时,由x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=3时,由x2+x+2=3,解得x=2(舍去)或x=5,此时D点坐标为(5,3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,3);(3)AO=1,OC=2,OB=4,AB=5,AC=,BC=2,AC2+BC2=AB2,ABC为直角三角形,即BCAC,如图,设直线AC与直线BE交于点F,过F作FMx轴于点M,由题意可知FBC=45,CFB=45,CF=BC=2,=,即=,解得OM=2,=,即=,解得FM=6,F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,直线

34、BE解析式为y=3x+12,联立直线BE和抛物线解析式可得,解得或,E(5,3),BE=【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度10已知抛物线y1=x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(1,5),点A与y1的顶点B的距离是4(1)求y1的解析式;(2)若y2随着x的

35、增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=x22x时,抛物线与x轴的交点(0,0)或(2,0),y2经过(2,0)和A,符合题意;当y1=x22x+8时,解x22x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(4,0),然后根据待定系数法求得即可【解答】解:(1)抛物线y1=x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(1,5),点A与y1的顶点B的距离是

36、4B(1,1)或(1,9),=1,=1或9,解得m=2,n=0或8,y1的解析式为y1=x22x或y1=x22x+8;(2)当y1的解析式为y1=x22x时,抛物线与x轴交点是(0.0)和(2.0),y1的对称轴与y2交于点A(1,5),y1与y2都经过x轴上的同一点(2,0),把(1,5),(2,0)代入得,解得,y2=5x+10当y1=x22x+8时,解x22x+8=0得x=4或2,y2随着x的增大而增大,且过点A(1,5),y1与y2都经过x轴上的同一点(4,0),把(1,5),(4,0)代入得,解得;y2=x+【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次

37、函数的解析式,根据题意求得顶点坐标是解题的关键11已知顶点为A抛物线经过点,点(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPM=MAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN1,若点N1落在x轴上,请直接写出Q点的坐标【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由OPM=MAF知OPAF,据此证OPEFAE得,即OP=FA,设点P(t,2t1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得【解答】解:(1)把点代入,解得:a=1,抛物线的解析式为:;(2)由知A(,2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,直线AB的解析式为:y=2x1,易求E(0,1),若OPM=MAF,OPAF,OPEFAE,设点P(t,2t1),则:解得,由对称性知;当时,也满足OPM=MAF,都满足条件,POE的面积=OE|t|,POE的面积为或(3)若点Q在AB上运动,如图1,设Q(a,2a1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论