




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本章自主测试(总分160分,时间100分钟)一填空题(本大题共14小题,每小题6分,共84分)1. 已知_2. 若是方程的解,其中,则 3. 已知,则=_4. 函数的最小正周期为_5.在中,分别是三个内角的对边若,则的面积为_第6题6.函数的部分图象如图,则_7.函数的最小正周期与最大值的和为 8. 定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,则的值为_9.函数()的递减区间是10.在锐角ABC中,已知,则的取值范围是 11. 已知的周长为,且,的面积为,则角= 12. 已知,则_13. 下面有5个命题:函数的最小正周期是终边在轴上的角的集合是在同一坐标系中,函数的图象和
2、函数的图象有3个公共点把函数的图象向右平移得到的图象函数在上是减函数其中,真命题的编号是_(写出所有真命题的编号)BACD第14题14. 如图,在中,是边上一点,则.二解答题(本大题共5小题,共76分解答应写出文字说明,证明过程或演算步骤)15 已知,(1)求的值;(2)求的值。 (1)解: 由,有, 解得(2)解法一:解法二:由(1),得 于是,代入得16 设锐角三角形的内角的对边分别为,()求的大小;()求的取值范围解:()由,根据正弦定理得,所以,由为锐角三角形得()由为锐角三角形知,又,所以由此有,所以,的取值范围为17设()求的最大值及最小正周期;()若锐角满足,求的值解:()故的最大值为;最小正周期()由得,故又由得,故,解得从而18已知.解法一:由题设条件,应用两角差的正弦公式得即 由题设条件,应用二倍角余弦公式得 故 由式和式得 .因此,由两角和的正切公式解法二:由题设条件,应用二倍角余弦公式得解得由由于,故在第二象限,于是.从而以下同解法一.19已知函数(其中)(I)求函数的值域;(II)若对任意的,函数,的图象与直线有且仅有两个不同的交点,试确定的值(不必证明),并求函数的单调增区间(I)解: 由,得,可知函数的值域为 (II)解:由题设条件及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.2走向共同富裕 课件 2025-2026学年度道德与法治九年级上册 统编版
- 象棋学习课件
- 豌豆种植科学课件
- 2025版厦门市区婚姻解除财产分配及子女抚养监护合同
- 2025版智慧家居产业财务顾问及市场拓展合同
- 2025版建筑节能材料研发与应用劳务分包合同范本
- 2025年度商务会议场地及专业设备租赁服务合同
- 2025年度大型会展活动策划合同
- 2025版外卖配送服务合同综合管理范本
- 2025版全新真石漆外墙施工及维护一体化合同
- 驾驶员安全教育培训考试试卷含答案
- 污水处理站运行记录台账范本
- 2025年消毒供应室业务学习考试试题(附答案)
- 校园基孔肯雅热防控措施课件
- 图像特征提取讲解
- 多彩贵州地方课程课件
- 劳技自制收纳盒课件
- 《管理学基础与实务》 课件全套 曾宪达 第1-11章 管理与管理者- 管理创新
- 2025年复工复产考核试题及答案
- 快餐公司门店设备夜间关闭管理制度
- 【公路监理大纲】公路工程监理大纲(含桥隧工程)
评论
0/150
提交评论