版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Quantum-behaved Particle Swarm Optimization,Outline,Background Quantum Particle Swarm Optimization Convergence of the Particle Experiment Results on Benchmark Functions Conclusion Future Work,Background,swarm intelligence a type of biological (social) system the collective behaviors of simple indivi
2、duals interacting with their environment and each other There are two popular swarm inspired methods in swarm intelligence areas: Ant Colony Optimization (ACO) Particle Swarm Optimization (PSO),Background,Particle Swarm Optimization It mimics the collective intelligent behavior of “ intelligent ” cr
3、eatures It was developed in 1995 by James Kennedy and Russell Eberhart Kennedy, J. and Eberhart, R. (1995). “Particle Swarm Optimization”, Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942-1948, IEEE Press. (/members/payman/swarm/kennedy95-ijcnn
4、.pdf ) It has been applied successfully to a wide variety of search and optimization problems In PSO, a swarm of n individuals communicate either directly or indirectly with one another in each search directions.,A particle (individual) is composed of: Three vectors: The x-vector records the current
5、 position (location) of the particle in the search space The p-vector records the location of the best solution found so far by the particle The v-vector contains a gradient (direction) for which particle will travel in if undisturbed. Two fitness values: The x-fitness records the fitness of the x-v
6、ector The p-fitness records the fitness of the p-vector.,Particle Swarm OptimizationThe Anatomy of a Particle,The Anatomy of a Particle,Ii X = P = V = x_fitness = ? p_fitness = ?,Particle Swarm Optimization,Particle Swarm Optimization,The particle will move according to the following equation: Veloc
7、ity calculation vid(t)=w*vid(t-1)+c1*rand()*(pid-xid(t-1)+c2*rand()*(pgd-xid(t-1) Position calculation xid(t)=xid(t-1)+vid(t) xid current value of the dimension “d” of particle “i” vid current velocity of the dimension “d” of particle “i”. Pid optimal value of the dimension “d” of particle “i” so fa
8、r. Pgd current optimal value of the dimension “d” of the swarm. c1, c2 acceleration coefficients. w - inertia weight factor,Particle Swarm Optimization,Pid,Pgd,Vid(t),Vid(t-1),Particle Swarm OptimizationSwarm Search,In PSO, particles never die! Particles can be seen as simple agents that fly through
9、 the search space and record the best solution that they have discovered. Initially the values of the velocity vectors are randomly generated with the range -Vmax, Vmax where Vmax is the maximum value that can be assigned to any vid. Once the particle computes the new Xi it then evaluates its new lo
10、cation. If x-fitness is better than p-fitness, then Pi = Xi and p-fitness = x-fitness.,Particle Swarm Optimization,The algorithm 1. Initialise particles in the search space at random. 2. Assign random initial velocities for each particle. 3. Evaluate the fitness of each particle according to a user
11、defined objective function. 4. Calculate the new velocities for each particle. 5. Move the particles. 6. Repeat steps 3 to 5 until a predefined stopping criterion is satisfied.,Quantum-behaved Particle Swarm Optimization,There are still some limitations in particle swarm including but not limited to
12、: The PSO is not a global convergence-guaranteed algorithm. The reliance of the search global search ability on the upper limit of the velocity reduces the robust of PSO algorithm. Parameter selection is another problem,Quantum-behaved Particle Swarm Optimization,The Motivation of QPSO According to
13、the characteristic of collectiveness of swarm intelligence, the potential well of was built on the point between pid and pgd The probability density function and distribution function are Where L is a parameter.,Quantum-behaved Particle Swarm Optimization,The evolution equations of the QPSO Using Mo
14、nte Carlo method, we obtain the following equation The mean of the pbest position is introduced L is evaluated by The evolution equation of the QPSO,The QPSO Algorithm,(1) Initialize population: random xi (2) do (3) Calculate mbest using equation (10) (4) for i=1 to population size M (5) If f(xi)0.5
15、 (13) xid=P-L*ln(1/u) else (14) xid=P+L*ln(1/u) (15) Until termination criterion is met,QPSO is provided with the following characteristics: Enhance the global search ability of PSO algorithm Has just only one parameter, easy to realize and to select the parameter. It is more stable than original PS
16、O.,Convergence Behavior of the individual particle in QPSO,In the stochastic simulations, point P is fixed at x=0, and the initial position of the particle is set to be 1000, that is x(0)=1000. The value of Contraction-Expansion Coefficient a is set to be 0.7, 1.0, 1.5, 1.7, 1.8 and 2.0 respectively
17、, and the number of iterations are 1000, 1500, 5000, 1500, 50,000, and 7000 respectively. The logarithmic value of the distance between current position x(t) and point p is recorded.,Convergence Behaviour of the Individual Particle in QPSO,Convergence Behavior of the Individual Particle in QPSO,Conv
18、ergence Behavior of the Individual Particle in QPSO,Convergence Behavior of the Individual Particle in QPSO,It can be concluded that when a1.8, it will diverge. There must be such a threshold value a0 in interval (1.7, 1.8) that if a a0). We have theoretical demonstrated using probabilistic analysis
19、 that a0=exp(g)1.778, where g is Euler constant.,Parameter Control of QPSO,The only parameter needed to be controlled in QPSO is a. The previous experiment results show that QPSO has a general good performance when a is decreasing linearly from 1.0 to 0.5,Experiment Configuration,Experiment Configur
20、ation,We had 50 trial runs for every instance and recorded mean best fitness and standard deviation. The population sizes are 20, 40 and 80. The maximum generation is set as 1000, 1500 and 2000 corresponding to the dimensions 10, 20 and 30 for first four functions, respectively, and the dimension of the last function is 2. The coefficient a decreases from 1.0 to 0.5 linearly when the algorithm is running.,Experiment Results,1. Results on Sphere Function,2. The Results on Rosenbrock Function,Experiment R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年安康市人民检察院招聘(8人)笔试备考试题及答案解析
- 2026山东事业单位统考淄博张店区面向大学生退役士兵、村党组织书记、社区党组织书记专项招聘岗位公开招聘工作人员(16人)考试参考试题及答案解析
- 2026内蒙古呼伦贝尔市海拉尔区基层医疗卫生机构专项招聘19人笔试参考题库及答案解析
- 2026浙江台州银行1月份招聘备考考试试题及答案解析
- 2026上半年杭州市妇产科医院招聘高层次、紧缺专业人才15人笔试模拟试题及答案解析
- 2026四川雅安经开区汇达管理服务有限公司招聘3人备考考试题库及答案解析
- 2026宜春市人力资源服务有限责任公司(宜春旅游集团)招聘3人备考考试题库及答案解析
- 2026年金华义乌市妇幼保健院招聘工作人员2人考试备考试题及答案解析
- 2026上银理财招聘考试备考试题及答案解析
- 2026年上半年黑龙江事业单位联考省人民政府黑瞎子岛建设和管理委员会招聘4人参考考试题库及答案解析
- 2026年哈尔滨通河县第一批公益性岗位招聘62人考试参考试题及答案解析
- 六年级寒假家长会课件
- 物流铁路专用线工程节能评估报告
- 2026天津市南开区卫生健康系统招聘事业单位60人(含高层次人才)备考核心试题附答案解析
- 重睑手术知情同意书
- 46566-2025温室气体管理体系管理手册及全套程序文件
- DL-T976-2017带电作业工具、装置和设备预防性试验规程
- 土石方工程挂靠合同
- 招聘会会展服务投标方案(技术标 )
- 企业标准-格式模板
- 软件售后服务人员提成方案附表
评论
0/150
提交评论