




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直接证明与间接证明,2.2,例1:已知a0,b0,求证a(b2+c2)+b(c2+a2)4abc,因为b2+c2 2bc,a0 所以a(b2+c2)2abc.,又因为c2+b2 2bc,b0 所以b(c2+a2) 2abc.,因此a(b2+c2)+b(c2+a2)4abc.,证明:,练习:,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法,用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.,则综合法用框图表示为:,特点:“由因导果”,例2:在中,三个内角、对应的边分别为a、b、c,且、成等差数列,a、b、c成等
2、比数列,求证为等边三角形,练习: 求证:对于任意角,cos4-sin4=cos2,回顾基本不等式: (a0,b0)的证明.,6,一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法,特点:执果索因.,用框图表示分析法的思考过程、特点.,例3求证:,证明:因为 都是正数,,所以为了证明,只需证明,展开得,即,只需证明2125,因为2125成立,,所以不等式 成立。,练习:P89 练习2,证:,例4:,练习:P89 练习3,思考?,A、B、C三个人,A说B撒谎,B说C撒谎,C说A、
3、B都撒谎。则C必定是在撒谎,为什么?,分析:假设C没有撒谎, 则C真. 那么A假且B假;,由A假, 知B真. 这与B假矛盾.,那么假设C没有撒谎不成立;,则C必定是在撒谎.,反证法: 假设命题结论的反面成立,经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。,反证法的思维方法: 正难则反,例5 求证: 是无理数。,假设不成立,故 是无理数。,1、用反正法证明时,导出矛盾有那几种可能?,(1)与原命题的条件矛盾;,(3)与定义、公理、定理、性质矛盾;,(2)与假设矛盾。,(1)难于直接使用已知条件导出结论的命题; (2)唯一性命题; (3)“至多”或“至少”性命题; (4)否定性或肯定性命题。,2、你认为反证法的使用情形有那些?,反思2:,(4)与客观事实矛盾.,说明:常用的正面叙述词语及其否定:,不等于,小于或 等于(),大于或 等于(),不是,不都是,至少有两个,一个也没有,某
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版高科技产业园厂房施工及设备安装合同大全
- 二零二五版绿色环保彩钢板采购供应合同
- 2025版企业破产财产保全担保合同编写指南
- 二零二五年度婚宴特色餐饮服务合同范本
- 二零二五年度航空航天润滑油采购供应商质量保证合同
- 二零二五年电力设施保管员聘用合同规范文本
- 2025版区块链技术应用与推广正规购销合同
- 2025版电子产品华南市场独家代理销售合同
- 二零二五搬家运输企业定制合同模板
- 2025版影视基地场地租赁与拍摄制作合同
- 快乐读书吧《人类起源的故事:爷爷的爷爷哪里来》导读课课件【知识精研】四年级语文下册统编版
- 三级教育培训试题及答案
- 物业工程考核管理办法
- 学生资助推动一站式学生社区建设研究
- 河南省郑州市2024-2025学年高一下期期末考试数学试卷
- 怀旧庙会活动方案
- 精密空调原理培训
- 2025至2030中国精酿啤酒行业深度产业运行态势及投资规划深度研究报告
- 2025年山东中考语文试卷真题解读及复习备考指导
- 糖尿病酮症酸中毒护理问题和措施讲课件
- 2025年湖北高考政治试卷真题及答案详解(精校打印版)
评论
0/150
提交评论