




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章 统计案例,1回归分析,1.1回归分析,1.通过实例掌握回归分析的基本思想方法. 2.利用最小二乘法会求线性回归直线方程,并能用线性回归直线方程进行预报.,1,2,1.线性回归方程 假设样本点为(x1,y1),(x2,y2),(xn,yn),设线性回归直线方程为y=a+bx,要使这n个点与直线y=a+bx的“距离”平方之和最小,即使得Q(a,b)=(y1-a-bx1)2+(y2-a-bx2)2+(yn-a-bxn)2达到最小,a,b需满足 对两个变量之间的相关关系进行统计分析的方法叫回归分析.回归分析是寻找相关关系中非确定性关系的某种确定性. 如果散点图中样本点的分布从整体上看大致在一条
2、直线附近,我们称这两个变量之间具有线性相关关系,这条直线叫线性回归直线,从整体上看各点与此直线的距离平方之和最小,即该直线最贴近已知的样本点,最能代表变量x与y之间的关系.,1,2,2.求线性回归方程的一般步骤 (1)作出散点图,将问题所给的数据在平面直角坐标系中描点,这样表示出的具有相关关系的两个变量的一组数据的图形就是散点图.从散点图中我们可以看出样本是否呈现条状分布,从而判断两个变量是否具有线性相关关系. (2)求回归系数a,b,其具体步骤为:将所给的数据xi,yi列成相应的表格,如下表所示:,1,2,1,2,【做一做1】 随机抽样中得到四个样本点分别为(1,2),(2,3),(3,4)
3、,(4,5),则y与x之间的回归直线方程为() A.y=x+1 B.y=x+2 C.y=2x+1 D.y=x-1 答案:A,1,2,【做一做2】 某设备的使用年限x(单位:年)和所支出的维修费用y(单位:万元)有如下的统计资料: 若由资料知,y与x呈线性相关关系.试求: (1)线性回归方程y=bx+a的回归系数a,b; (2)估计使用年限为10年时,维修费用是多少?,1,2,题型一,题型二,【例1】 在关于人体的脂肪含量(百分比)和年龄关系的研究中,研究人员获得了一组数据:,(1)假设x与y之间呈现近似的线性相关关系,求y与x之间的线性回归方程; (2)给出37岁人的脂肪含量的预测值.,题型一
4、,题型二,分析:两个变量呈现近似的线性相关关系,可通过公式计算出其线性回归方程,并根据方程求出预测值. 解:(1)设线性回归方程为y=a+bx,根据已知列表如下:,题型一,题型二,题型一,题型二,反思本题关键在于利用公式求b和a,确定线性回归方程.,题型一,题型二,【变式训练1】 某5名学生的数学和化学成绩如下表: (1)画出散点图; (2)求化学成绩y对数学成绩x的线性回归方程.,题型一,题型二,题型一,题型二,【例2】 某农场对单位面积化肥用量x(单位:kg)和水稻相应产量y(单位:kg)的关系作了统计,得到数据如下: 求出线性回归方程,并预测当单位面积化肥用量为32 kg时,水稻的产量大
5、约是多少?(精确到0.01 kg),题型一,题型二,题型一,题型二,题型一,题型二,【变式训练2】 某地最近十年粮食需求量逐年上升,下表是部分统计数据:,(1)利用所给数据求年需求量与年份之间的回归直线方程y=bx+a; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.,题型一,题型二,1,2,3,4,5,1.对具有线性相关关系的两个变量建立的线性回归方程y=a+bx中,回归系数b() A.可以小于0B.只能大于0 C.可能等于0D.只能小于0 解析:b可能大于0,也可能小于0,但当b=0时,x,y不具有线性相关关系. 答案:A,1,2,3,4,5,2.下列两个变量间的关系不
6、是函数关系的是() A.正方体的棱长与体积 B.角的弧度数与它的正弦值 C.单产为常数时,土地面积与粮食总产量 D.日照时间与水稻亩产量 答案:D,1,2,3,4,5,3.已知两个变量x和y之间具有线性相关性, 甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归的方法求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都是t,则下列说法正确的是 () A.l1与l2一定有公共点(s,t) B.l1与l2相交,但交点一定不是(s,t) C.l1与l2必定平行 D.l1与l2必定重合 答案:A,1,2,3,4,5,4.某城市供电局为了了解用电量y(单位:度)与气温x(单位:)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表: 由表中数据,得线性回归方程y=-2x+a,当气温为-4 时,预测用电量的度数约为.,1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 荆州市监利市事业单位2025年统一公开招聘笔试历年典型考题及考点剖析附带答案详解
- 随州市曾都区事业单位2025年统一公开招聘笔试历年典型考题及考点剖析附带答案详解
- 【扬州】2025年江苏扬州高新技术产业开发区下属单位招聘员额制工作人员4人笔试历年典型考题及考点剖析附带答案详解
- 张娟诗经教学课件
- 2025年西安市事业单位公开招聘(募)工作人员笔试和安排笔试历年典型考题及考点剖析附带答案详解
- 【安阳】2025年河南安阳市殷都区区直事业单位公开选调工作人员34人笔试历年典型考题及考点剖析附带答案详解
- 第七节气体钢瓶的常用标记及使用注意事项66课件
- 传统节日教学设计课件
- 小学生篮球拍球活动课件
- 小学生科学课件
- 古田会议课件教学课件
- 小数乘除法竖式计算题及答案
- 2024年医院信息保密制度范本(三篇)
- 第22章 相似形 单元检测题2023-2024学年沪科版数学九年级上册
- 血管内超声IVUS简介
- DL∕T 2528-2022 电力储能基本术语
- 山东财经大学《大学英语》2022-2023学年期末试卷
- 2024年歌尔股份有限公司校园招聘考试试题完美版
- peskin量子场论课后答案(芝加哥大学版)
- 医院专家工作站合作协议书
- 2023年河北语文高考试题
评论
0/150
提交评论